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Abstract

Does a sender benefit from communicating with an audience in groups rather than

publicly or privately? In a cheap-talk game, I show that the sender can gain credibility

by ensuring diversity of opinions in a group so that her incentive to lie to a subset of

the group is offset by her incentive to be truthful to the rest. The sender’s optimal

grouping, or partition, of the audience maximises her benefit from gaining credibility

from each group. Public or private communications are not necessarily optimal when

the sender can benefit from differently diverse groups of receivers. When the sender

values each receiver equally and can gain credibility only by ensuring diversity of

opinions in her audience, I show that it is optimal for the sender to separate those

who need to be persuaded from those who do not. I also derive further properties of

optimal communication when receivers are “single-minded,” and demonstrate the role

of diversity in shaping optimal communication.

A politician is trying to persuade a voter by claiming that hers and the voter’s interests
are aligned. Would the voter find such an argument persuasive? A valid concern for the
voter is that the politician could be making the same claim to other voters with conflicting
interests. Such a concern might mean that the voter would not find the politician’s argument
persuasive. But what if the politician was making the same claim in the presence of another
voter with conflicting interests? The politician’s claim that her interest is aligned with that
of the original voter is then also a statement that her and the other voter’s interests are
not aligned. Thus, the same statement—that “our interests are aligned”—is more credible
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in the presence of the other voter because the claim now has stakes for the politician.1

This intuition might suggest that the politician would benefit from speaking publicly in
front of all the voters. In this paper, I demonstrate that the politician is often better off
communicating to voters in multiple groups (by, for example, inviting different sets of
voters to different events) because doing so allows her to adopt different arguments that are
most persuasive to each group that are differently diverse.

More concretely, I study a cheap-talk game in which a sender wishes to persuade a
heterogeneous set of receivers to each always take a particular individual action, and each
receiver’s action is equally valuable for the sender.2 The departure from existing literat-
ure is that I allow the sender to communicate semi-publicly with the receivers; i.e., the
sender can form a partition of receivers and choose a messaging strategy that specifies
state-contingent message for each group of the partition.3 As in the motivating example
above, communicating to a diverse group of receivers can have a disciplining effect on the
sender’s incentive to lie and thus lend credibility to the sender’s cheap-talk communication.
However, not all kinds of diversities are equal because the presence of some voters may not,
in fact, have the desired disciplining effect. Thus, communicating semi-publicly—as op-
posed to publicly—involves the sender ensuring that each group contains an appropriately
diverse set of receivers to make her communication to each group credible.

Toward characterising the sender’s optimal semi-public communication, I first show
that the sender’s messaging strategy with respect to each group can be independent across
groups (Lemma 1). Hence, the sender’s payoff from any partition can be expressed as a
sum of her payoffs from each group, where her payoff from a group is taken to be her
preferred equilibrium payoff of a public cheap-talk game with respect to the group. Con-
sequently, the sender’s problem is to maximise the sum of payoffs from each group over
the set of all possible partitions of receivers; i.e., the sender’s problem is an example of
a Coalition Structure Generation (CSG) problem that is well-studied—but is known to be
computationally difficult to solve—in the computer science literature. I then show that it is
always optimal for the sender to separate the audience into at least two groups (Theorem
1): one group consisting of those that do not need persuading (i.e., receivers who take the

1Farrell and Gibbons (1989) first observed this effect in the context of a sender-receiver game with two
receivers.

2As I discuss later, the sender’s transparent motive to persuade receivers implies that diversity in an
audience is the only potential source of credibility for the sender.

3Public and private communication are special cases of semi-public communication in which the partition
of the audience is either the entire audience or the collection of singleton sets of individuals in the audience,
respectively.
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sender-preferred action without any information) and the other consisting of those that do
need persuading. This result implies that, for example, there is no need to ensure diversity
of opinions in political rallies that are held for the supporters. The result also means that the
sender’s problem of finding optimal communication is nontrivial only for the latter group
of receivers consisting of those that do need persuading.

To make progress, I specialise the model by assuming that receivers are single-minded;
i.e., each receiver takes the sender-preferred action if and only if their belief that the state is
their preferred one is above a threshold.4 For example, if we take the unknown state as the
single political issue that the politician cares about, a single-minded receiver is a voter who
votes for the politician only if their belief that the politician cares about the same issue as
theirs is sufficiently high. This specialisation allows for the possibility that groups consist
of receivers that care about different sets of states/issues.

I first give examples demonstrating that ensuring diversity within a group—both in
terms of the member receivers’ preferred states as well as their thresholds—can help the
sender gain credibility in her communication. Semi-public communication benefits the
sender by allowing her to take advantage of differently diverse groups from which she can
gain credibility. However, I also show that splitting the audience into groups is potentially
costly for the sender because she must give up hope of persuading at least one receiver in
each group to gain credibility (Proposition 1).

I then show that it is possible for the sender to focus on trying to persuade receivers
who are easier to persuade (Proposition 2), and that the sender’s problem can be written
as a multi-dimensional knapsack problem. To obtain further results, I consider the case
when receivers are contentious; i.e., when no one argument can be persuasive to receivers
who prefer different states. With such receivers, I show that the sender need only consider
groups that contain at most one receiver who prefers any particular state, and that optimal
communication within each group involves the sender expressing that they prefer a partic-
ular state (Proposition 3). In particular, the result implies that ambiguous communication
that does not make clear the state is not credible. I also provide a simple algorithm that can
attain an optimal partition when there are only two or three states (Proposition 4).

With single-minded receivers, private communication is never strictly preferred by the
sender (Proposition 4). However, it is possible for the sender to strictly prefer public com-
munication over any (other) semi-public communication. In fact, public communication is

4I discuss how single-minded receivers can be used as building blocks to model other receiver preferences
in section 4.
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the only way for the sender to nontrivially persuade the maximal number of receivers in
any group, and the sender can achieve this only if the size of the audience is smaller than
the number of states, each receiver prefers a different state, and receivers are not conten-
tious (Proposition 5). I also show that public communication is guaranteed to be optimal
as receivers become increasingly contentious (Proposition 6).

Although I mainly interpret my results in the context of a politician trying to persuade
voters, my results are also applicable to other contexts. For example, a seller attempt-
ing to persuade buyers to purchase a product by sending individual or group emails, or a
manager attempting to induce effort from her workers by holding a single meeting or sev-
eral meetings. Finally, I emphasise that the distinguishing feature of my model is that the
sender here is able to communicate in groups. While the literature has compared public
versus private communication as well as a combination of private and public communica-
tion (e.g., Goltsman and Pavlov, 2011; Arieli and Babichenko, 2019; Mathevet, Perego and
Taneva, 2020), the idea that the sender communicates in strategically formed groups is new
to the literature.5

Related literature The rich literature on cheap talk began with Crawford and Sobel
(1982) who consider the case with a single informed sender and a single receiver.6 Far-
rell and Gibbons (1989) analyse a cheap-talk model with two receivers and shows, inter

alia, that the sender can grain credibility by communicating publicly (instead of privately)
due to a mutual discipline effect whereby the presence of one receiver disciplines the com-
munication with the other receiver and vice versa (as in the example in the introductory
paragraph). The results in this paper extend the idea of mutual discipline to a setting with
more than two receivers, which allows for semi-public communications and richer sources
of the disciplining effect.7

In Crawford and Sobel’s (1982) and many other cheap-talk games, the sender’s prefer-
ence depends on the state so that the credibility of the sender’s communication can arise
from the endogenous cost of messages as in signalling games (Spence, 1973). In the paper,
I focus instead on the case in which the sender’s preference is state independent thus re-

5I briefly comment on the sender’s ability to communicate via multiple partitions of the receivers in the
discussion. Such an extension would include a combination of private and public communication as a special
case.

6See surveys by Sobel (2013); Özdogan (2016); Kamenica (2019); Bergemann and Morris (2019); Forges
(2020).

7Goltsman and Pavlov (2011) study the two-receiver version of Crawford and Sobel (1982)’s uniform-
quadratic model. Battaglini (2002) studies cheap-talk models with multiple senders.
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moving the possibility of signalling to generate credibility for the sender.8 This allows me
to focus on semi-public communication as the sole way in which the sender can gain cred-
ibility in her communication. A number of authors have shown alternative ways in which
the sender with state-independent preferences in cheap talk models can gain credibility.
Chakraborty and Harbaugh (2010) show that, when the state is multidimensional, a sender
who faces a single receiver can gain credibility by trading off different dimensions of the
state. Lipnowski and Ravid (2020) observe that a sender facing a single receiver gains
credibility by degrading self-serving information. Schnakenberg (2015; 2017) studies how
a sender facing multiple receivers can credibly communicate information to multiple re-
ceivers in collective choice settings (e.g., voting) by public cheap talk. Salcedo (2019)
considers a similar problem in which a sender, who faces many receivers, cares about per-
suading only a subset of the receivers.

CSG problems have been studied extensively in the computer science literature (see,
for example, a survey by Rahwan et al., 2015). In economics, Sandholm (1999) shows
that the determination of winners in combinatorial auctions is a CSG problem. Although
general CSG problems have been shown to be computationally hard to solve, the literature
has identified classes of CSG problems that are tractable. Of particular relevance is a class
of CSG problems that have agent-type representation (Aziz and Keijzer, 2011; Ueda et al.,
2011) meaning that the value of coalition of players depend on the types of players that the
coalition contains. I describe how the Sender’s optimal communication can be computed
using algorithms from the CSG literature.

1 An illustrative example

To develop some intuition for the results, suppose that the sender is a politician who faces
n ∈ N voters (i.e., receivers), N = {1,2, . . . ,n}. The politician and the voters care about
one of three possible issues (i.e., states of the world), Θ = {θ 1,θ 2,θ 3}. Let µ0 denote
the common prior belief about the politician’s opinion defined as the issue θ ∈ Θ that the
politician cares about. Suppose that each receiver i ∈ N is a single-issue voter and votes
for the politician only if he believes that the likelihood that the politician shares his opinion
is sufficiently high. Specifically, let θi ∈ Θ denote voter i ∈ N’s opinion and suppose the

8When the sender’s preference is state independent, the receivers have complete information about the
sender’s preference. Hence, some authors describe such a sender as having an extreme bias (Chakraborty and
Harbaugh, 2010) or transparent motives (Lipnowski and Ravid, 2020).
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receiver votes for the politician only if his belief that θ = θi is greater than a common
threshold γ = 3

4 . Initially, no receiver would vote for the politician (i.e., µ0(θ) < γ for
all θ ∈ Θ) and the politician’s objective is to maximise the number of votes using cheap-
talk communication; i.e., by sending messages that are costless and are correlated with her
opinion.

The first example demonstrates how the sender’s communication can be credible when
there is a diversity of opinion in the audience.

Example 1. Suppose that there are three voters, θi = θ i for all i ∈ N, and µ0 = (1
3 ,

1
3 ,

1
3);

i.e., each voter i ∈ {1,2,3}’s opinion is given by θ i and they believe that the politician’s
opinion is equally likely to be any one of the three possible issues. Standard arguments
mean that the politician cannot persuade any voter to vote for her in equilibrium using
private communication.9 However, the politician can guarantee herself one vote in equi-
librium by publicly communicating her opinion truthfully. This is because truthful public
communication results in her obtaining exactly one vote independently of whether she tells
the truth or lies about her opinion. Consequently, the politician has no incentive to lie about
the state. Moreover, in this example, no other communication (in groups or otherwise) can
guarantee a strictly higher number of votes for the politician; i.e., telling the public her true
opinion is, in fact, optimal for the politician. □

In Example 1, public communication is credible because the diversity of opinion among
the voters disciplines the politician’s communication. For example, when the politician’s
opinion is θ 1, her incentive to lie about her opinion to either voter 2 or 3 (whose opinions
are θ 2 and θ 3, respectively) is offset by her incentive to be truthful to voter 1.10 To see
this in another way, let us take a belief-based approach and express the politician’s com-
munication by the distribution of posterior beliefs that it induces if it were credible. Note
that any belief about the politician’s opinion can be represented as a point in the belief
simplex as shown in Figure 1, where each vertex labelled θ ∈ Θ corresponds to the re-
ceiver(s) having a certain belief that θ is the politician’s opinion. The prior belief, µ0, in
Example 1 lies in the centre of the simplex. For each i ∈ N, the shaded region labelled

9To see this, by way of contradiction, suppose there was a message sent privately to each voter that
can persuade a receiver to vote in an equilibrium. The politician then has the incentive to always send
this persuasive message independently of her true opinion. But such a message is necessarily uninformat-
ive about the politician’s opinion and, given the assumption on the prior belief, the receiver would not be
persuaded—contradicting the initial assertion that the message was persuasive.

10Note that the politician can obtain at most one vote by lying.
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Bi := {µ ∈ ∆Θ : µ(θi) ≥ 3
4} represents the voter i’s voting region; i.e., the set of beliefs

under which voter i would vote for the politician.11

Figure 1: Example 1.

µ0

✓1

✓2 ✓3

B1

B2 B3

Recall that a set of posterior beliefs can be induced by some credible communication if
and only if the convex hull of the set contains the prior belief µ0 (Aumann and Maschler,
1968; Kamenica and Gentzkow, 2011). This condition is also necessary for the politician’s
cheap talk to be able to induce a set of posterior beliefs. However, to ensure that cheap
talk is credible, it must also be the case that the politician is indifferent among all beliefs
in the set of posterior beliefs that her communication would induce if it were credible.
Combining these observations gives that the politician is able to always obtain one vote in
this Example 1 if the convex hull of the voting regions contains the prior (Schnakenberg,
2015); i.e., µ0 ∈ co(B1 ∪B2 ∪B3), where co(·) denotes the convex hull of a set.12 The
condition also implies that the politician must express a particular stance in order to be
credible—ambiguous communication that does not make clear the politician’s opinion is
not credible.

Figure 1 also makes it clear that that the politician is unable to obtain votes from any
pairs of voters because µ0 /∈ co(Bi ∪B j) for any distinct i, j ∈ {1,2,3}. This, in particular,
implies that only the maximally diverse group of voters can give rise to the disciplining
effect that gives credibility to the politician’s communication. Hence, in Example 1, com-

11Since µ0(θ) <
3
4 for any θ ∈ Θ, the prior belief µ0 is not contained in any of the voting regions.

Moreover, the fact that the threshold exceeds 1
2 means that the voting regions do not intersect; i.e., Bi∩B j =∅

for all distinct i, j ∈ N.
12That the voting regions do not intersect also means that no posterior belief can induce more than one

vote. Hence, the politician cannot do strictly better than truthful public communication that always induces
one vote.
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municating in groups (e.g., talking to voters 1 and 2 together while talking to voter 3 separ-
ately) is unhelpful for the politician. The next example demonstrates that, when differently
diverse subsets of the audience can give rise to the disciplining effect, the sender can benefit
from communicating in groups because doing so allows her to tailor her communication to
each group.

Example 2. Suppose now that the politician faces an additional voter who has the same
opinion as voter 2 (i.e., θ2 = θ4 = θ 2), and that the prior belief is given by µ0 = (1

5 ,
3
5 ,

1
5).

Figure 2 shows the voting regions as well as the prior belief in the belief simplex.
Figure 2: Example 2.

µ0

✓1

✓2 ✓3

B1

B3B2 =B4

Notice that, because µ0 ∈ co(B1 ∪B2), the politician is able to always obtain one vote
by communicating with voters 1 and 2 together. Similarly, because µ0 ∈ co(B3 ∪B4), the
politician is able to always obtain one vote by communicating with voters 3 and 4 together.
In other words, by partitioning the audience into two groups, {{1,2},{3,4}}, she is able to
always obtain two votes.13 In contrast, public communication can only guarantee at most
one vote and the politician cannot obtain any vote with private communication.14 It follows
that the politician’s optimal communication involves splitting the audience into two groups
and communicating publicly within each group but privately across the two groups. □

In Example 2, unlike in the first example, preferences and the prior belief are such that
the politician is able to guarantee a vote from three differently diverse groups of voters: by

13To be concrete, letting σi j denote the politician’s communication strategy with respect to the pair {i, j}
of voters and M := {m0,m1}, an optimal communication strategy profile is: σ12(m0|θ 1) = σ34(m0|θ 3) = 0,
σ12(m0|θ 2) = σ34(m0|θ 2) = 1 and σ12(m0|θ 3) = σ34(m0|θ 1) = 3

4 .
14To ensure that public communication is credible, the politician must ensure that voters 2 and 4 are

indifferent between voting or not voting (and be able to choose an equilibrium such that the expected number
of votes she gets is one). In particular, this means that truthful communication is no longer credible.
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pairing voters whose opinion is θ 2 with those whose opinion is θ 1 or θ 3, or by a group that
contains receivers of all possible opinions. Moreover, any communication that guarantees
a vote from the pair consisting of voters 1 and 2 would not guarantee a vote from the
pair consisting of voters 3 and 4; because whatever would induce voter 1 to vote would
not induce voter 4 to vote. Communicating in groups is thus strictly preferred over public
communication because it allows the politician to simultaneously gain credibility by having
sufficient diversity in each group and to tailor her communication to what each group finds
persuasive.

A useful observation from the examples above is that the politician’s communication
across groups can be assumed to be independent (conditional on the politician’s opinion).
Consequently, an optimal partition of voters can be obtained in two steps. First, one can
associate a value, w(G), to any group G ⊆ N of voters based on the number of votes that
the politician can guarantee from the group using the aforementioned geometric condition.
The problem of finding an optimal communication reduces to finding a partition of voters
that maximises the sum of values of groups, which is a type of CSG problem. In what
follows, I set up a model of cheap-talk persuasion game with multiple receivers that allows
for the sender’s problem to be reduced to a CSG problem, and derive properties of optimal
partitions under different specifications of receivers’ preferences.

2 A cheap-talk game with multiple receivers

There is a single Sender, denoted S, and a finite set N := {1,2, . . . ,n} of Receivers. Each
Receiver i ∈ N chooses an action ai from a finite set Ai, and his payoff depends only on his
own action and the state of the world θ ∈ Θ, where Θ is a finite set of states. The Sender’s
payoff is state independent, separable with respect to each Receiver’s action, and Receivers’
actions are weakly beneficial for the Sender.15 Thus, each Receiver i ∈ N’s payoff is given
by ui : Ai ×Θ → R and the Sender’s payoff is given by uS : A → R+ with uS(a1, . . . ,an) :=

∑i∈N vi(ai), where A := ×i∈NAi and vi : Ai → R+ for all i ∈ N. The Sender has a strict
preference towards each Receiver taking a particular action; i.e., v∗i := maxai∈Ai vi(ai)> 0
for all i ∈ N. The majority of the results concern the case in which each Receiver’s action
is binary and the Sender wishes to maximise the number of Receivers taking the higher

15I discuss how to accommodate cases in which the Sender’s payoff is not separable in Receivers’ actions
in section 4.
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action.; i.e., Ai := {0,1} and vi(ai) := ai for all i∈N.16 Throughout, I refer to any nonempty
subset G ⊆ N of Receivers as a group of Receivers.

The timing of the game is as follows. First, the Sender publicly chooses a partition P ∈
Π(N) of Receivers.17 Then, the Sender observes the state drawn according to a common
full-support prior distribution µ0 ∈ ∆Θ, and sends a message mG ∈ M to each group G ∈P

of Receivers, where M is a set of possible messages that is sufficiently rich.18 Each Receiver
i∈N who belongs in group Gi ∈P (only) observes the Sender’s message to group Gi, mGi ,
and then takes an action ai ∈ Ai. Payoffs are then realised.

Given any P ∈Π(N), I define a P-equilibrium as a weak perfect Bayesian equilibrium
of the game in which the Sender is restricted to sending the same message to Receivers
who belong in the same group.19 Formally, a P-equilibrium is a collection of three maps
(σP ,α,µP), where σP : Θ → ∆(MP) denotes the Sender’s messaging strategy, α =

(αi)i∈N denotes the Receivers’ action strategy profile with αi : M → ∆Ai for each i ∈ N,
and µP = (µG)G∈P denotes the belief map profile for Receivers with µP

G : M → ∆Θ for
each group G ∈ P . For brevity, I write σ ≡ σP and µ ≡ µP when no confusion should
arise, and call a tuple (σ ,α,µ) a P-equilibrium if it satisfies the following conditions: (i)
for each G ∈ P , the belief map µG is derived by updating µ0 via Bayes rule whenever
possible, i.e, for all mG ∈ M,

µG (·|mG) ∑
θ∈Θ

∑
m−G∈M−G

σ (mG;m−G|θ)µ0 (θ) = ∑
m−G∈M−G

σ (mG;m−G|·)µ0 (·) ,

where M−G := MP\{G}; (ii) each receiver i ∈ N’s action strategy αi is optimal given µGi ,
i.e., for all i ∈ N and all mGi ∈ M,

supp(αi (·|mGi))⊆ argmax
ai∈Ai

∑
θ∈Θ

ui (ai,θ)µGi (θ |mGi) ; (1)

16Given a set X , let Π(X) denote the set of all partitions of X . Given a set X , ∆X denotes the set of
probability measures over the set X . Given a probability measure µ ∈ ∆X , supp(µ) denote the support of
measure µ .

17See section 4 for the case in which the Sender chooses a partition after observing the state, as well as
the case in which each Receiver knows the members of the group that he belongs in but does not know how
Receivers outside of his group are partitioned.

18It will suffice that |M| ≥ |Θ|.
19One can interpret the Sender’s ability to communicate in groups as a limited form of commitment to

communication strategies. In particular, given a partition, the sender is able to commit to communication
strategies that send the same message to Receivers who are in the same group.
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(iii) Sender’s messaging strategy σ is incentive compatible given α , i.e., for all θ ∈ Θ,

supp(σ (·|θ)) ∈ argmax
m∈MP

∑
a∈A

uS (a) ∏
G∈P

∏
i∈G

αi (ai|mG) . (2)

I refer to a pair (P,σP) as the Sender’s communication strategy. I say that the Sender’s
communication strategy is public if P = {N}, private if P = {{i}}i∈N , and strictly semi-

public if it is neither private nor public.
Let W ∗

P denote the Sender’s payoff in her preferred P-equilibrium, and w∗
G denote

the Sender’s payoff in a Sender-preferred equilibrium of the public cheap-talk game with
a group G ⊆ N of Receivers. The following lemma establishes that I can compute W ∗

P

by solving the Sender’s the public cheap-talk problem with respect to each group G ∈
P independently.20 The result follows from the fact that, given the separability of the
Receivers’ actions in the Sender’s payoff, the Sender does not benefit from correlating
messages across groups.

Lemma 1. Given a partition P ∈Π(N), the Sender’s payoff in her preferred P-equilibrium

is given by the sum of her payoffs in her preferred equilibrium of the public cheap-talk game

with each group G ∈ P of Receivers; i.e., W ∗
P = ∑G∈P w∗

G.

Proof. See Appendix A.1. ■

The lemma allows me to write the Sender’s optimal communication strategy with re-
spect to any group G ⊆ N of Receivers as a solution to the following problem:

W ∗ (G) := max
P∈Π(G)

∑
F∈P

w(F) , (3)

where w : 2N → R by w(G) := w∗
G for any group G ⊆ N of Receivers and w(∅) := 0.

To proceed, I first characterise the coalition function w(·) by adopting a belief-based
approach (Aumann and Maschler, 1968; Kamenica and Gentzkow, 2011). To that end, let
VG : ∆Θ ⇒ R be a correspondence such that VG(µ) gives the set of payoffs the Sender can
attain from a group G ⊆ N of Receivers who best responds given a common belief µ ∈ ∆Θ

under some tie-breaking rules for the Receivers.21 I refer to the correspondence VG as the

20Arieli and Babichenko (2019) obtains an analogous (and stronger) result (Theorem 4) in the case of
Bayesian persuasion (i.e., without requiring incentive compatibility condition for the Sender, (2), in the defin-
ition of P-equilibrium) with binary states and binary actions.

21More concretely, the correspondence VG is given by VG(·) := ∑i∈G Vi(·), where Vi : ∆Θ ⇒ R is defined

11



12

Sender’s value correspondence with respect to group G of Receivers. Given any group
G ⊆ N of Receivers, define BG : R ⇒ ∆Θ via s 7→ {µ ∈ ∆Θ : maxVG(µ) ≥ s}, and say
that a payoff s ∈ R is G-securable if µ0 ∈ co(BG(s)). Observe that any group G ⊆ N of
Receivers can be thought of as a single representative Receiver whose preference is such
that the Sender’s value correspondence with respect to the representative Receiver is given
by VG. Therefore, Lipnowski and Ravid’s (2020) Corollary 1 implies that the Sender can
attain a payoff s ≥ maxVG(µ0) using public cheap talk among group G ⊆ N of Receivers if
and only if s is G-securable, and that w(G) is given by the highest payoff that is G-securable
for any group G⊆N. The lemma below lists some useful properties of w. The first property
gives a bound on the Sender’s payoff from any group, the second tells us that the coalition
function is increasing (in the set inclusion order). The last property, in particular, implies
that adding a Receiver i ∈ N to a group cannot increase the Sender’s payoff more than the
highest payoff that the Sender can attain from i, v∗i .

Lemma 2. The coalition function w(·) has the following properties.

(i) maxVG(µ0)≤ w(G)≤ v∗G := ∑i∈G v∗i .

(ii) w(G)≥ w(G′) for all G′ ⊆ G ⊆ N.

(iii) w(G)≤ w(G′)+∑i∈G\G′ v∗i for all G′ ⊆ G ⊆ N.

Proof. Property (i) follows from the fact that maxVG(µ0) is the Sender’s payoff in her
preferred babbling equilibrium of a public cheap talk game with group G of Receivers and
that maxVi ≤ v∗i for any i ∈ N. (ii) follows from the fact that vi(·)≥ 0 for all i ∈ N so that,
for any G′ ⊆ G ⊆ N, maxVG = maxVG′ +maxVG\G′ ≥ maxVG′ implying BG′(s) ⊆ BG(s).
(iii) holds because maxVG+∑i∈G′\G v∗i ≥ maxVG+maxVG′\G = maxVG′ for any G′ ⊆ G ⊆
N. ■

Let N0 ⊆ N denote the set of all Receivers who are willing to take the sender-preferred
action without any information (i.e., i ∈ N0 if and only if maxVi(µ0) = v∗i ). Thus, N0

is the group of Receivers consisting of all those that do not need persuading. Let N1 :=
N\N0 denote the group of Receivers consisting of all those that do need persuading. The

as

µ 7→ co

({
vi (ai) : ai ∈ argmax

a′i∈Ai

∫
Θ

ui
(
a′i,θ

)
dµ (θ)

})
.

Since Vi is a Kakutani correspondence (by Berge’s theorem), VG is also a Kakutani correspondence. In
particular, maxVG is a well-defined, upper semi-continuous function.

12
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following result establishes that the Sender can treat the problem of persuading Receivers
in N1 independently of persuading Receivers in N0. In other words, there is never any need
for the Sender to “preach to the choir.”

Theorem 1 (Don’t Preach to the Choir). The Sender’s problem can be split into two in-

dependent problems of communicating with Receivers who do not require persuading (i.e.,

set N0 of Receivers) and those who require persuading (i.e., set N1 of Receivers); i.e.,

W ∗ (N) =W ∗ (N0)+W ∗ (N1)

Moreover, W ∗(N0) = v∗N0
and the Sender can attain this payoff with any partition of N0.

Proof. The second part of the theorem is immediate: Since N0 consists of Receivers whose
optimal action under the prior belief includes the Sender-preferred action, a payoff of v∗G is
G-securable with any group G ⊆ N0. To prove the first part of the theorem, let P∗

1 ∈ Π(N1)

be a maximiser that attains W ∗(N1) and P∗ ∈ Π(N) be a maximiser that attains W ∗(N).
Since {N0,N1} ∈ Π(N), by definition, W ∗(N)≥W ∗(N0)+W ∗(N1). Now take any G ∈P∗

such that G∩N0 ̸= ∅. Then, part (iii) of Lemma 2, w(G)−w(G\(G∩N0)) ≤ ∑i∈G∩N0 v∗i .

Since this holds for all G ∈ P∗,

W ∗ = ∑
G∈P∗

w(G)≤ ∑
G∈P∗

w(G\(G∩N0))+ ∑
G∈P∗

∑
i∈G∩N0

v∗i

= ∑
G∈P∗

w(G\(G∩N0))+ ∑
i∈N0

v∗i

≤W ∗ (N1)+W ∗ (N0) ,

where the last inequality follows from the fact that {G\(G∩N0)}G∈P∗ is a partition of
N1. ■

The theorem means that the Sender can never strictly benefit by grouping together Re-
ceivers from N0 and N1, and that the Sender’s problem is nontrivial only with respect to the
set N1 of Receivers. The following result, which is immediate from part (ii) of Lemma 2,
further implies that the Sender’s problem with respect to the set N1 of Receivers is nontrivial
only if publicly communicating with N1 is beneficial for the Receiver.

Corollary 1. If w(N1) = 0, then W ∗(N1) = 0; i.e. if public communication is not beneficial

for the Sender with respect to those who require persuading, then she cannot benefit from

semi-public communication either.
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Proof. Since vi(·) ≥ 0, w(G) ≥ 0 for all G ⊆ N1. If 0 = w(N1), part (ii) of Lemma 2
implies that 0 = w(N1) ≥ w(G) for all G ⊆ N1. Hence, w(G) = 0 for all G ⊆ N1 so that
W ∗(N1) = 0. ■

Note that the pair (N,w(·)) defines a coalition game with transferable utility (a type of
a cooperative game), where w(·) is the coalition function that gives the value of any sub-
coalition (i.e., a group of Receivers).22 Viewed in this way, the Sender’s problem, (3), is
an example of coalition structure generation (CSG) problems that seek to find a coalition
structure (i.e., a partition of Receivers) that maximises the total value of sub-coalitions.23

While in principle, CSG problems can be solved by evaluating every possible partition of
players, such a brute-force approach is not practicable as the number of possible parti-
tions—i.e., the cardinality of the set Π(N)—grows (double) exponentially with the num-
ber of players.24 The solution to a CSG problem is immediate if the coalition function
is supper-additive or sub-additive: in the former case, the optimal partition is the “grand
coalition” (i.e., P = {N}), while in the latter case, the optimal partition is the trivial coali-
tions (i.e., P = {{i}}i∈N ). However, as examples in section 1 demonstrate, the coalition
function w(·) is neither super-additive nor sub-additive.25 In fact, finding a solution to CSG
problems in general is NP-hard (Sandholm et al., 1999). Thus, to obtain further properties
of optimal communication, I now consider Receivers who are “single-minded” as in the
introductory example.

3 Single-minded Receivers

Suppose now that Receivers’ actions are binary, ai ∈ Ai := {0,1} for all i ∈ N, and that
Receivers are single-minded; i.e., each Receiver i ∈ N takes action ai = 1 (resp. ai = 0) if
he believes that the state is θi ∈ Θ is greater (resp. smaller) than probability γi ∈ [0,1].26

Thus, each Receiver i ∈ N’s preferences can be described by a pair of parameters (θi,γi) ∈

22For more on coalition games, see, for example, Peleg and Sudhölter (2007). To be clear, the game that
I study is not a cooperative game since it is the Sender who receives the value of the coalition as opposed to
the Receivers who are the members of coalitions.

23CSG problems have been extensively studied by computer scientists in the context of multi-agent sys-
tems. See Rahwan et al. (2015) for a survey.

24See Proposition 1 in Sandholm et al. (1999). For example, even with n = 15 players, the number of
possible partitions exceeds 1 billion.

25In section 4, I discuss how existing algorithms can be used to solve the Sender’s problem.
26For example, ui(ai,θ) := ai(1{θ=θi}− γi), where the Receiver’s payoff from choosing ai = 0 is normal-

ised to be zero.
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Θ× (0,1), where θi is the Receiver i’s opinion (i.e., his preferred state of the world) and γi

denotes Receiver i’s strength of his opinion. Let Bi := {µ ∈ ∆Θ : µ(θi) ≥ γi} denotes the
set of beliefs under which it is optimal for the Receiver i ∈ N to takes action optimally, and
BG :=

⋂
i∈F Bi for any group G ⊆ N. Given two distinct Receivers i, j ∈ N who share an

opinion (i.e., θi = θ j), I say that Receiver i is more (resp. less) extreme than Receiver j if
γi ≥ γ j (resp. γi ≤ γ j).

Lemma 3. With single-minded Receivers, a payoff s ∈ R is G-securable if and only if

µ0 ∈ co

 ⋃
F⊆G:|F |=⌈s⌉

BF

 . (4)

where ⌈s⌉ denotes the smallest integer that is greater than s. Moreover, µ0 is at most a

convex combination of |Θ|-many elements of {BF}F⊆G:|F |=⌈s⌉.

Proof. For any group G ⊆ N of single-minded Receivers,

BG (s) =

{
µ ∈ ∆Θ : ∑

i∈G
1{µ(θi)≥γi} ≥ s

}
=

{
µ ∈ ∆Θ : ∑

i∈G
1{µ(θi)≥γi} ≥ ⌈s⌉

}
= {µ ∈ ∆Θ : ∃F ⊆ G, µ ∈ BF and |F |= ⌈s⌉}=

⋃
F⊆G:|F |=⌈s⌉

BF

so that (4) follows. The last result follows from Carathéodory’s theorem while noting that
∆Θ has dimension |Θ|−1. ■

When concerning whether a payoff of s = 1 is G-securable, the condition (4) reduce
to µ0 ∈ co(

⋃
i∈G Bi), which was the relevant condition for Examples 1 and 2. Following

the setup of these examples, Figure 3 below gives two cases in which the Sender is able to
attain a payoff of 2 from a group G of workers. In panel (a), the voting regions of Receivers
with different opinions do not overlap, and the Sender is able always to obtain two votes
because µ0 ∈ co(B{1,3}∪B{2,4}). In panel (b), the voting regions of Receivers with different
opinions are overlapping, and the Sender is able to always obtain two votes because µ0 ∈
co(B{1,2}∪B{2,3}∪B{1,3}). Note that the Sender can use public communication to attain a
payoff of two in both cases.

15



16

Figure 3: w(G) = 2.

(a) Non-overlapping voting regions.
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(b) Overlapping voting regions.
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The following lemma summarises some additional properties of the coalition function
when Receivers are single-minded. The first property implies that the Sender’s payoff from
a group is simply the number of Receivers that the Sender can persuade to take action. The
second property is that diversity of opinions in an audience is necessary for the Sender’s
communication to be persuasive. The third property says that the Sender can persuade
all Receivers in a group to take action if and only if the group consists of Receivers who
do not require persuading. The fourth property concerns groups consisting of Receivers
who require persuading and gives the upper bound on the proportion of Receivers that the
Sender can possibly persuade. This property gives an upper bound on the size of the group
that depends on the payoff that the Sender can attain from a group of Receivers.27 The final
property is that replacing a Receiver in a group with another less extreme Receiver with the
same opinion does not affect the Sender’s payoff.

Lemma 4. Suppose Receivers are single minded. The coalition function w(·) has the fol-

lowing properties.

(i) w(G) ∈ {0,1, . . . , |G|} for all G ⊆ N.

(ii) w(G) = 0 for any G ⊆ N1 such that θi = θ j for all i, j ∈ G.

27In a working version of this paper, I show that the upper bounds in parts (iv) and (v) in the lemma are
tight; i.e., there exists µ0 ∈ ∆Θ and a set of single-minded Receivers that require persuading that attains these
upper bounds.
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(iii) w(G) = |G| if and only if µ0 ∈ Bi for all i ∈ G (i.e., G ⊆ N0).

(iv) For any G ⊆ N1,

w(G)≤

|G|−1 if |G| ≤ |Θ|⌈
|G| |Θ|−1

|Θ| −1
⌉
≤ |G|−1 if |G|> |Θ|

. (5)

(v) For any non-singleton group G ⊆ N1 and any k ∈ {1, . . . , |G|−1}, if w(G) = |G|−k,

then |G| ≤ k|Θ|.

(vi) w(G) = w((G\{i})∪{ j}) if j is such that θ j = θi, γi ≥ γ j and µ0 /∈ B j.

Proof. The first part follows from the fact that maxVG(µ) = ∑i∈G 1{µ(θi)≥γi} and takes
positive integer values. That µ0 ∈ Bifor all i ∈ G implies w(G) = |G| is clear from (4). To
see the converse, suppose that w(G) = |G|, then (4) implies µ0 ∈ co(

⋂
i∈G Bi) =

⋂
i∈G Bi,

where the equality follows from the fact that Bi is convex. Hence, µ0 ∈ Bifor all i ∈ G. (iii)
Suppose that a nonempty G ⊆ N1 consists only of Receivers with opinion θ ∈ Θ. Let i∗ ∈ G

denote (any one of) the least extreme Receiver in G. Then, Bi ⊆ Bi∗ for all i ∈ G. Thus, if
(4) holds for any s ∈ R+ such that ⌈s⌉ ≥ 1, then µ0 ∈ Bi∗ , which contradicts that G ⊆ N1. I
prove parts (iv) and (v) in Appendix A.1 by effectively converting the condition in Lemma
3 to bipartite graphs with specific properties. The last property follows from the fact that
Bi ⊆ B j. ■

Because a group consisting of a single Receiver is necessarily not diverse, part (ii) of
Lemma 4 implies that the Sender cannot persuade a Receiver from N1 to take action by
communicating privately. In other words, Sender’s payoff from privately communicating
is the same as if she did not communicate at all.

Corollary 2. Suppose Receivers are single-minded. Then, private communication is op-

timal if and only if there is no benefit from communication, i.e.,

µ0 /∈ co

(⋃
i∈N1

Bi

)
. (6)

Proof. Since private communication is always optimal among N0, it suffices to characterise
the condition when private communication is optimal among N1. It only remains to show
that the condition above holds if and only if there is no benefit from communication. First,
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note that if the condition above does not hold, then w(N1)≥ 1 so that there is benefit from
communication. Conversely, suppose there is some benefit from communication. Then,
there exists a group G ⊆ N1 such that w(G)≥ 1. By part (ii) of Lemma 2, w(N1)≥ w(G)≥
1. Note that any group that can G-secure a payoff s > s′ can also secure a payoff of s′ so
that a payoff of 1 is N1-securable; i.e., µ0 ∈ co(

⋃
i∈N1

Bi). ■

While private communication is never strictly preferred by the Sender, there are cases in
which public communication is strictly preferred over strictly semi-public communication
and vice versa. Indeed, public communication was strictly preferred for the Sender in
Example 1 while semi-public communication was strictly preferred in Example 2. In the
case of Example 2, strictly semi-public communication allowed the Sender to benefit from
communicating with two groups that were differently diverse in terms of opinions. The
next example demonstrates that diversity in terms of strength of opinions can also lead the
Sender to strictly prefer strictly semi-public communication.

Example 3. As in the illustrative examples from section 1, there are three possible issues.
There are four voters: (odd-numbered) voters 1 and 3 who share an opinion θ 1, and (even
numbered) voters 2 and 4 who share an opinion θ 2. Suppose further that γ1 = γ2 =

3
4 and

γ3 = γ4 =
1
2 so that voter 1 (resp. 2) is less extreme than voter 3 (resp. 4). Suppose that

each voter believes that the politician’s opinion is equally likely to be any one of the three
possible issues. Figure 4 shows the voting regions as well as the prior belief in the belief
simplex.

Figure 4: Example 3.
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B3
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Observe that µ0 is contained in co(B1∪B4) and co(B2∪B3) so that w({1,4})=w({2,3})=
1. Thus, the Sender can attain a payoff of 2 using strictly semi-public communication.
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However, if the Sender were to use public communication, the Sender cannot attain a pay-
off of two because µ0 is not contained in co(B1 ∪B2). Thus, although groups {1,4} and
{2,3} are equally diverse in terms of opinions, the Sender can nevertheless strictly prefer
strictly semi-public communication due to the diversity of strength of opinions across the
groups. □

Examples 2 and 4 demonstrate together that diversity in the audience—both in terms
of opinions and strength of opinions—can be the reason why the Sender prefers semi-
public communication. Intuitively, with diversity in the audience, different arguments (i.e.,
messaging strategies) are persuasive to different subsets of the audience and semi-public
communication allows the Sender to tailor her communication to subsets of the audience.
However, splitting the audience into groups is potentially costly for the Sender as the fol-
lowing result shows.

Proposition 1. The Sender’s potential payoff from communicating semi-publicly with a

collection of single-minded Receivers who require persuading is decreasing in the number

of groups she forms. In fact,

W ∗
P1

≤ |N1|− |P1| ∀P1 ∈ Π(N1)

Proof. From part (iv) of Lemma 4, implies that, for any P1 ∈ Π(N1),

W ∗
P1

= ∑
G∈P

w(G)≤ ∑
G∈P

(|G|−1) = |N1|− |P| . ■

For the Sender to be persuasive against any (diverse) group of singled-minded Receiv-
ers, she must ensure that her statements have stakes by ensuring that her incentive to lie to
a subset of the group is offset by her desire to be truthful to another subset of the group.
Such effect wold not be present if the Sender can persuade all Receivers in the group to take
action. Thus, partitioning the set of Receivers N1 into smaller groups limits the maximum
potential payoff from the Sender.

3.1 Solving for optimal partitions

In general, there are multiple partitions that can attain W ∗. Example 2 demonstrates one
source of multiplicity. In that example, both partitions {{1,2},{3,4}} and {{1,4},{2,3}}
yield the Sender-optimal payoff of two. The multiplicity there arises from the fact that
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Receivers 2 and 4 are identical—in particular, this means that they are interchangeable in
any group that contains just one of them. Thus, from the Sender’s perspective, the two
agents are identical. Formally, say that Receivers i, j ∈ N are of the same type if

w(G∪{i}) = w(G∪{ j}) ∀G ⊆ N\{i, j} .

Note that the definition allows preferences for Receivers of the same type to differ.
Following Aziz and Keijzer (2011) and Ueda et al. (2011), let T be the set of types of

Receivers, ti ∈ T denote Receiver i’s type, and nt denote the number of type-t Receivers
in N (i.e., nt := |{i ∈ N : ti = t}|). By definition, any G,G′ ⊆ N that contain the same
number of types of Receivers must yield the same payoff. The Sender’s problem can thus
be stated equivalently as the problem of finding optimal ways to group the different types
of Receivers. Towards this goal, given any G ⊆ N, let ψG be a vector that specifies the
number of types of each Receiver that G contains; i.e.,

ψ
G = (|i ∈ G : ti = t|)t∈T ∈ Ψ :=×t∈T {0, . . . ,nt} ;

and define ω : Ψ → R by setting ω(ψ) = w(G) for any G ⊆ N such that ψ = ψG. I refer
to ψ ∈ Ψ as a type-group. Notice that any partition P ∈ Π(N) can be represented as a
collection of type-groups {ψG}G∈P ⊆ Ψ such that

∑
G∈P

ψ
G = (nt)t∈T .

The Sender’s problem can now be stated as a problem of finding an optimal collection of
type-groups; i.e.,

W ∗ = max
{ψ}⊆Ψ

∑
ψ ′∈{ψ}

ω
(
ψ

′) s.t. ∑
ψ ′∈{ψ}

ψ
′ = (nt)t∈T , (7)

where, with slight abuse of notation, I let {ψ} denote a collection of subsets of Ψ and
ψ ∈ {ψ} denote an element in the collection. In Example 2, letting T = Θ, then W ∗ is
attained by the unique type-groups {(1,1,0),(0,1,1)}.

Multiplicity can also arise from the fact N may contain multiple instances of type-
groups. For example, if we add copies of Receivers in Example 2, then a type-group
(2,2,0) yields the same payoff as two of type-group (1,1,0). To deal with this kind of
multiplicity, I say that a type-group ψ ∈ Ψ is simple if either (i) partitioning the group
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further leads to strictly lower payoffs,

ω (ψ)> max
{ψ ′}⊆Ψ, {ψ ′}̸={ψ} ∑

ψ ′′∈{ψ}
ω
(
ψ

′′) s.t. ∑
ψ ′′∈{ψ ′}

ψ
′′ = ψ;

or (ii) it is a singleton group (i.e., ψ is everywhere zero except for one type).28

Lemma 5. Any optimal collection of type-groups can be expressed as a collection of simple

type-groups.

Proof. Fix a collection of type-groups {ψ∗} ⊆ Ψ that is optimal but contains a type-group
ψ∗ ∈ {ψ∗} that is not simple. By definition, there exists {ψ ′} such that ∑ψ ′′∈{ψ ′}ψ ′′ =

ψ∗ with |{ψ ′}| > 1 and ∑ψ ′′∈{ψ ′}ω(ψ ′′) ≤ ω(ψ∗). But since {ψ∗} is optimal, the latter
inequality must be an equality. ■

Let Ψ∗ denote the set of simple groups such that ω(ψ)> 0 if and only if ψ ∈ Ψ∗. The
lemma above implies that we may replace Ψ with Ψ∗ in (7).

The Sender’s problem can be thought of as deciding on which and how many simple
type-groups to form while ensuring that the total number of Receivers of each type does not
exceed the available number of Receivers. Thus, the Sender’s problem can be formulated
as a multi-dimensional knapsack problem:

W ∗ = max
(xψ)∈ZΨ∗

+

∑
ψ∈Ψ∗

ω (ψ)xψ s.t. ∑
ψ∈Ψ∗

ψxψ ≤ (nt)t∈T .

The formulation above allows one to adopt algorithms that solve multi-dimensional knap-
sack problems to solve (possibly approximately) the Sender’s problem.

Aziz and Keijzer (2011) show that it is also possible to solve for an optimal partition
recursively. To that end, define W : Ψ → R recursively as follows:

W (ψ) =

0 if ψ = 0⃗

max
{

W
(
(nt − xt)t∈T

)
+ω

(
(xt)t∈T

)
: xt ∈ {0, . . . ,nt} ∀t ∈ T

}
otherwise

.

The iterative procedure is as follows. First, start with ψ⃗0 = 0⃗ and set W (⃗0) = 0, where
0⃗ is a vector of |T |-many zeros. Next, consider groups containing one Receiver, ψ ′ ∈

28Conitzer and Sandholm (2006) study CSG problems in which some groups of agents are not valuable.
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{(1,0, . . .),(0,1,0, . . .), . . . ,(0, . . . ,0,1)}, and let

W
(
ψ

′) := max
{

W
(⃗

0
)
, W

(⃗
0
)
+ω

(
ψ

′)} .
Next, consider groups containing two receivers, ψ ′ ∈ {(1,1,0, . . .),(0,1,1,0, . . .), · · ·} and
set

W (1,1,0, . . .) = max
{

W (⃗0)+ω(1,1,0, . . .),W (1,0, . . .)+ω(0,1,0 . . .), · · ·
}
,

and so on. Proceeding in this way gives W ((nt)t∈T ) =W ∗.29

3.2 Properties of optimal communications

The following result shows the sense in which it is optimal for the Sender to focus on trying
to persuade Receivers who are easier to persuade (i.e., those who are less extreme).

Proposition 2. Suppose Receivers are single-minded. Then, there exists an optimal parti-

tion such that Receivers who are in groups that the Sender has a chance of persuading are

all less extreme than those who are in groups that the Sender does not have a chance of

persuading. That is, there exists P∗
1 that attains W ∗(N1) such that any i in some G ∈ P∗

1

such that w(G) = 0 is more extreme than all i′ with θi = θi′ in some G′ ∈ P∗
1 such that

w(G′)> 0.

Proof. Let P∗
1 be an optimal partition of N1. Suppose that there exists i that belongs in

some group G ∈ P∗
1 such that w(G) = 0. Suppose further that there exists i′ with θi = θi′

who belongs in some group G′ ∈ P∗
1 such that w(G′) > 0 and i′ is less extreme than i.

Then, B j ⊆ Bi. Thus, part (vi) of Lemma 4 implies that i and i′ can be exchanged without
affecting payoffs. Exchanging all such i with i’ gives the desired result. ■

Due to the combinatorial nature of the problem, deriving further properties of optimal
communications is difficult even when restricting attention to single-minded Receivers. To
derive more properties, I impose further restrictions on the Receiver’s preferences. To that
end, say that Receivers in N1 are contentious if no single argument (i.e., posterior belief) is
able to persuade Receivers who have differing opinions; i.e., Bi ∩B j ̸= ∅ for all i, j ∈ N1

such that θi ̸= θ j. For example, Receivers in Figure 3a are contentious while Receivers in

29The algorithm runs in time O(|N|2|T |).
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Figure 3b are not contentious. Moreover, because, for any Receivers i, j ∈N1 with differing
opinions (i.e., θi ̸= θ j),

Bi ∩B j ̸=∅⇔ γi + γ j > 1.

Hence, Receivers are continuous when their opinions are sufficiently extreme.

Proposition 3. Suppose that Receivers in N1 are single-minded and contentious. Then,

there exists an optimal partition of N1 in which each group is simple and contains at most

one Receiver of any particular opinion, and the Sender attains a payoff of at most one from

each group; i.e., there exists P∗
1 ∈ Π(N1) such that W ∗(N1) = ∑G∈P∗

1
w(G), |{i ∈ G : θi =

θ}| ∈ {0,1} for all θ ∈ Θ, and for all G ∈ P∗.

Proof. Fix an optimal partition of P∗
1 ∈ Π(N1). Fix any G ∈ P∗

1 . By Lemma 3, there
exist {µk}K

k=1 and {F1, . . . ,FK} ⊆ G with |Fk|= w(G) for all k ∈ {1,2, . . . ,K} such that µ0

is a convex combination of {µk}K
k=1 such that µk ∈ BFk for all k ∈ {1,2, . . . ,K}. Observe

that, given any i, j ∈ N1 such that θi ̸= θ j, γi + γ j > 1 if and only if Bi ∩B j = ∅. Thus,
each Fk must contain w(G) Receivers with the same opinion. Let G1 ⊆ P be a group that
consists of one Receiver ik from each Fk. Then, By Lemma 3, w(G1) = 1 because µ0

is a convex combination of (µk)
K
k=1 such that µk ∈ Bikfor each k ∈ {1,2, . . . ,K}. With

the remaining Receivers, G\G1, construct G2 consisting again of one Receiver from each
F1\G1,F2\G1, . . . ,FK\G1. Proceeding in this manner gives {Gk}w(G)

k=1 such that w(Gk) = 1
for each k ∈ {1, . . . ,w(G)}. Since w(·)≥ 0,

w(G)≤
w(G)

∑
k=1

w(Gk)︸ ︷︷ ︸
=w(G)

+w

G\
w(G)⋃
k=1

Gk

 .

However, because ({Gk}w(G)
k=1 ) ∪ (G\⋃w(G)

k=1 Gk) is a partition of G, the right-hand side
must be less than w(G) by optimality of G so that w(G\⋃w(G)

k=1 Gk) = 0. Hence, by part
(ii) of Lemma (2), the Sender cannot attain a strictly positive payoff from any subset of
G\⋃w(G)

k=1 Gk. Thus, I can partition G\⋃w(G)
k=1 Gk such that each (sub)group contains (at

most) one Receiver with a particular opinion. ■

The contrapositive of Proposition 3 says the following: If the Sender is able to persuade
two or more Receivers in a simple group,30 then there must be an argument (i.e., a posterior

30For example, in Figure 3a, the Sender is able to always obtain two votes by the partition {{1,2},{3,4}}
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belief) that can persuade Receivers with differing opinions to take action. In other words,
the Sender is able to persuade two or more Receivers in a group in a “nontrivial manner”
only when at least some Receivers’ opinions are not too extreme (as in Figure 3b). In this
sense, the Sender is able to benefit more from Receivers whose opinions are not extreme by
grouping such Receivers together. The flip-side of this observation is that, when Receivers
are contentious, the sender’s communication is never ambiguous meaning that any posterior
belief the Sender induces only persuades Receivers of one particular opinion.

Proposition 3 is useful when solving for the optimal partition because it means that
one need not consider groups that contain more than |Θ| Receivers nor groups that contain
more than one Receiver of any particular opinion. It turns out that, even if Receivers are
not contentious, if |Θ| ∈ {2,3}, it remains the case that an optimal partition exists in which
no groups contain more than |Θ| Receivers and each group contains at most one Receiver
of any particular opinion.31

Notice that when |Θ| = 3, there are only three ways in which the Sender can secure
a strictly positive payoff from a group containing up to three Receivers. The Sender can
secure a payoff of: two from a trio (as in Figure 3b), one from a pair (as in Example 2),
one from a trio (as in Example 1). Observe that these three cases can be ordered by their
per-Receiver payoff for the Sender. This suggests that an optimal partition can be attained
by an algorithm that sequentially maximises the number of groups that secure the highest
per-Receiver payoff; i.e., first maximise the number of trios that can secure a payoff of
two, then with the remaining Receivers, maximise the number of pairs that can secure a
payoff of one, and finally, maximise the number of trios that can secure a payoff of one
with the still remaining Receivers. I call such an algorithm the greedy algorithm. The
following gives two sufficient conditions on the Receivers’ preferences that ensure that the
greedy algorithm attains an optimal communication. To state it, I say that Receivers are
homogenous if Receivers with the same opinion have the same strength of opinion; i.e., for
each θ ∈ Θ, there exists γθ ∈ (0,1) such that γθ = γi for all i ∈ N1 such that θi = θ .

Proposition 4. Suppose |Θ| ∈ {2,3} and Receivers are single-minded. The greedy al-

gorithm yields an optimal partition if either Receivers are contentious or if Receivers are

homogeneous.

of Receivers (i.e., {1,2,3,4} is not a simple group), whereas in Figure 3b, any nontrivial partition of Receivers
would only guarantee one vote for the Sender (i.e., {1,2,3} is a simple group).

31In a working version of the paper, I give an example with |Θ| = 4 and non-contentious Receivers in
which the maximum size of groups is strictly greater than 4 and groups might contain more than one Receiver
of the same type.
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Proof. See Appendix A.1. ■

Recall that if Receivers are contentious, then no simple group can secure a payoff of
two. Hence, optimal communication when |Θ|= 3 involves either a trio or a pair that secure
a payoff of one. The result above tells us that the Sender should first maximise the number
of such pairs over trios. If Receivers are homogenous, then the only source of diversity in
a group is the differences in the Receivers’ opinions (i.e., it rules out Example 3).32

When the state is binary, Proposition 3 implies that it suffices to consider pairs of Re-
ceivers (who prefer opposite states). Thus, a partition that maximises the number of pairs
that secure a payoff of one must be optimal. In other words, the greedy algorithm yields an
optimal partition of N1 when the state is binary (without any restrictions on the thresholds).

3.3 When is public communication sufficient?

Let us now consider when public communication is sufficient for the Sender. An immediate
implication of the Corollary 1 is that public communication is the only way to attain a
payoff |N1|− 1 for the Sender. In other words, public communication is strictly preferred
by the Sender over strictly semi-public communication if |N1| − 1 is N1-securable. The
following establishes the conditions under which the Sender can attain |N1| − 1 from the
set N1 of Receivers that require persuading.

Proposition 5. Suppose Receivers are single-minded and |N1| ≥ 3 and that w(N1) = |N1|−
1 (i.e., |N1|−1 is N1-securable), Then,

(i) the size of the audience is smaller than the range of opinions (i.e., |N1| ≤ |Θ|),

(ii) Receivers are maximally diverse (i.e., θi ̸= θ j for all distinct i, j ∈ N1),

(iii) Receivers are not contentious (i.e., it cannot be that γi + γ j > 1 for all distinct i, j ∈
N1).

Conversely, there exist µ0 ∈ ∆Θ and a set N1 of single-minded Receivers who require per-

suading (i.e., µ0 /∈ Bi for any i ∈ N1) such that w(N1) = |N1|−1 that satisfies properties (i)

to (iii).

32In Appendix A.3, I give examples in which the greedy algorithm fails to attain an optimal partition
because (i) |Θ| = 3 but Receivers are not contentious, and (ii) Receivers are contentious and homogeneous
but |Θ|= 4.
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Proof. Suppose w(N1) = |N1|−1. Part (i) follows from part (v) of Lemma 4. By Lemma
3, there exists a collection of L ≤ |Θ| subgroups of N1, {Gℓ}L

ℓ=1, each consisting of exactly
|N1| − 1 Receivers from N1 (i.e., |Gℓ| = |N1| − 1) such that µ0 is a convex combination
of {µℓ}L

ℓ=1 where µℓ ∈ BGℓ
for all ℓ ∈ {1,2, . . . ,L}. Since there are only |N1| Receivers,

L ≤ |N1|. If L < |N1|, then there would be at least one Receiver i ∈ N1 that belongs in
every subgroup which would imply that µ0 ∈ Bi contradicting that i ∈ N1. Thus, L = |N1|
in which case, for each ℓ ∈ {1,2 . . . ,L}, there exists a unique iℓ := N1\Gℓ. Suppose that
two distinct Receivers i, j ∈ N1 share an opinion; i.e., θi = θ j. Without loss of generality,
suppose Bi ⊆ B j. Note that µ j ∈ Bℓ for all ℓ ̸= j and, in particular, µ j ∈ Bi. But then
µ j ∈ B j because Bi ⊆ B j. In particular, this means that µ0 ∈ B j contradicting that j ∈ N1.
It therefore follows that Receivers in N1 must all have distinct opinions. Finally, suppose
that |N1| ≥ 3 so that |Gℓ| ≥ 2 for all ℓ ∈ {1,2, . . . ,L}. Then, for any i, j ∈ Gℓ, it must be that
Bi ∩B j ̸=∅ requires that that γi + γ j ≤ 1.

To prove the converse, suppose |N1|= |Θ| and that each Receiver in N1 prefers distinct
states and, abusing notation slightly, I let N1 = Θ. For each θ ∈ Θ, let (γθ )θ∈Θ be such that
γθ ∈ ( 1

|Θ| ,
1

|Θ|−1) for all θ ∈ Θ. Observe that

∑
θ̃∈Θ\{θ}

γ
θ̃
< ∑

θ̃∈Θ\{θ}

1
|Θ|−1

= 1 and ∑
θ̃∈Θ

γ
θ̃
> ∑

θ̃∈Θ

1
|Θ| = 1.

The first inequality implies inequality implies that BΘ\{θ} ̸=∅ because, in particular, µ ∈
∆Θ such that µ(θ̃) = γ

θ̃
for all θ̃ ∈ Θ\{θ} and µ(θ) = 1−∑θ̃∈Θ\{θ} γθ is contained in

BΘ\{θ}. The second inequality implies that ∆Θ\⋃i∈G Bi ̸= ∅ because any µ ∈ ∆Θ such
that µ(θ̃) < γ

θ̃
for all θ̃ ∈ Θ is contained in ∆Θ\⋃i∈G Bi. Thus, I can choose any µ0 ∈

∆Θ\⋃i∈G Bi as the prior belief and it would be that w(N1) = |N1| − 1. Observe that the
construction above in fact is applicable when |N1|< |Θ| if we choose G = Θ̃ where Θ̃ ⊆ Θ

with |G|= |Θ̃|. ■

Recall that the benefit of strictly semi-public communication arises from the fact that
the Sender can adopt different messaging strategies with respect to differently diverse
groups of Receivers. Thus, public communication is optimal if the Sender is only able
to persuade a group of a specific diversity. One example of such a case is when Receiv-
ers are extremely contentious so that the only way for the Sender to be able to persuade a
Receiver in a group is if the group is maximally diverse (i.e., contains Receivers of every
possible opinion).
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Proposition 6. Public communication is sufficient with respect to Receivers who are ex-

tremely contentious, and the Sender’s payoff is given by the number of Receivers with the

least popular opinion. That is, γi → 1 for all i ∈ N1, public communication with Receivers

who require persuading is optimal and

W ∗ (N1) = w(N1) = min
θ∈Θ

|{i ∈ N1 : θi = θ}|.

Proof. I first show that, as Receivers become extremely sceptical (i.e., γi → 1 for all i∈N1),
optimal partitions consist of groups that contain Receivers of every possible opinion. Recall
that µ0 ∈ ∆Θ has full support. Hence, there exists sufficiently high γ = (γi)i∈N1 such that
µ0 can only be expressed as a combination of elements from {Bi}i∈G if

⋃
i∈G θi = Θ. Since

Bi∩B j =∅ for any district i, j ∈N1 with θi ̸= θ j for sufficiently large γi and γ j, ∩i∈GBi ̸=∅
if and only if G ⊆ N1 contains Receivers of the same opinion. Thus, it follows that a group
G ⊆ N1 can secure a positive payoff only if it contains Receivers of every possible opinion.
Then, by Lemma 3, we have w(G) = minθ∈Θ |{i ∈ G : θi = θ}|.

Toward showing that public communication is optimal, let P∗
1 be an optimal partition

of N1. If |P∗|= 1, then there is nothing to show. Suppose instead that |P∗
1 |> 1. For any

G,G′ ∈P∗, a payoff of w(G)+w(G′) is G∪G′-securable because there are w(G)+w(G′)-
many Receivers of each of the possible opinions in G∪G′. If w(G∪G′)> w(G)+w(G′),
then there exists S ⊂ G and S′ ⊂ G′ such that S∪ S′ contains w(G∪G′)−w(G)−w(G′)-
many Receivers of every possible opinion. But this contradicts the fact that P∗

1 is optimal
since (G\S)∪ (G′\S′)∪ (S∪S′) is a partition of G∪G′. Thus, w(G∪G′) = w(G)+w(G′)

for any G,G′ ∈ P∗
1 . It follows then that w(

⋃
G∈P∗ G) = w({N1}) = minθ∈Θ |{i ∈ N! : θi =

θ}. ■

4 Discussion

I discuss a number of extensions and results under alternative assumptions below.

Commitment The desire for the Sender to communicate semi-publicly arises from the
fact that Receivers do not inherently trust the Sender to communicate “truthfully”. This
lack of trust, formally captured as the Sender’s inability to commit any communication
strategy, means that the sender’s communication is not credible unless it satisfies the in-
centive compatibility constraint, (2), in the definition of equilibrium. Semi-public com-
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munication benefits the Sender by giving more ways to satisfy the incentive compatibil-
ity constraint. If, instead, the Receivers trusted the Sender to communicate truthfully as
in Bayesian persuasion (Kamenica and Gentzkow, 2011), the Sender’s communication is
credible even if it is not incentive compatible for the Sender. Consequently, there is no
gain from communicating in groups and so private communication is always optimal for
the Sender.

Signalling An assumption of the model is that the Sender chooses the partition of Re-
ceivers prior to observing the state. This assumption ensures that the Sender’s choice of
partition does not convey any information about the state. One may also consider the case
in which the Sender chooses the partition after observing the state; however, allowing for
such signalling does not affect the results. More concretely, in such a signalling version
of the game, there always exists a pooling equilibrium in which the sender’s payoff and
the optimal partition (on the equilibrium path) correspond to the equilibrium payoff and
partition in the original game.33

Cost of communicating in groups Recall that communication is costless in the model—in
particular, not only are the messages payoff irrelevant, there are also no (marginal) costs
associated with forming groups. While this is realistic in some situations (e.g., commu-
nication via emails), in other situations such as the sender communicating with receivers
by holding meetings, it may be more plausible to include costs that depend on the num-
ber of groups in each partition. The costs of forming groups would be an additional force
that pushes the sender to prefer public communication. Given that there are often many
partitions that give rise to the same equilibrium payoff for the Sender, the costs of forming
groups justifies the sender selecting the coarsest partition among optimal partitions.

Other Receiver preferences The single-minded Receiver preferences that I study above
can be used as a building block for more general Receiver preferences. For example, if

33To see this, suppose toward a contradiction that there is a type θ ∈ Θ that selects a different partition
from all other types in equilibrium. Then, it must be that that type-θ Sender gets at least as high a payoff
as others. If type-θ Sender gets a strictly higher payoff, then other types would deviate and choose the
same partition as type-θ . Hence, if there was a separating/hybrid equilibrium in the signalling game, there
must also exist a pooling equilibrium in which type-θ Sender selects the same partition as all other types.
Moreover, any deviation from the on-path partition can be punished by an off-path belief that assumes any
communication by the Sender to be uninformative.
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a particular Receiver’s actions are worth twice as much to the Sender than other Receiv-
ers, one could treat such a Receiver as a group of two “normal” Receivers. In solving
for optimal partitions (section 3.1), one can then these two Receivers as a separate type-
group. The same method can also account for the case when some Receivers’ actions are
complementary.

One can also derive properties of optimal partitions in case Receivers’ preferences are
“spatial” which can capture the situation in which, for example, the politician and voters
are all either left- or right-wing, and each voter would vote for the politician only if their
expectation of the politician’s position on the political spectrum (represented as an interval)
is sufficiently close to their own. Concretely, suppose that state space is the unit interval,
Θ := [0,1],34 and that the state θ ∈Θ represents the Sender’s position on the spectrum; with
θ = 0 representing the “left” end of the spectrum and θ = 1 representing the “right” end of
the spectrum. For simplicity, suppose that the common prior belief µ0 ∈ ∆Θ is atomless.35

Each Receiver i ∈ N takes action (i.e., ai = 1) if he believes that the Sender’s expected
position on the spectrum is sufficiently close to his opinion θi ∈ {0,1}; otherwise, the
Receiver does not take action (i.e., ai = 0). Each Receiver i’s preference can be described
by a pair ti = (θi,γi) ∈ {0,1}× [0,1], where i’s payoff is given by

ui (ai,θ) = (−1)θi ai (γi −θ) .

Given two distinct Receivers i, j ∈ N that prefer the same extreme (i.e., θi = θ j), say that
Receiver i is less extreme than Receiver j if Receiver i would take action whenever Receiver
j would; i.e., |θi − γi| ≥ |θ j − γ j|. The following characterises an optimal partition under
this alternative preferences of Receivers.

Proposition 7. There exists an optimal partition with the following properties.

(i) Every Receiver is either paired with another Receiver or unpaired;

(ii) Unpaired Receivers are more extreme than any paired Receivers;

(iii) Receivers are paired negatively assortatively; i.e., among Receivers in pairs, the most

extreme Receiver with ideal 0 (or 1) is paired with the least extreme Receiver with

opinion 1 (or 0), and so on.

34Assuming that Θ is the unit interval is a normalisation.
35The results would not change materially even if the prior belief contained atoms.
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Proof. See Appendix A.1. ■

The proposition shows that an optimal semi-public communication is one in which the
partition consists of pairs and/or singletons of receivers in which pairs consist of receivers
who prefer the opposite ends of the spectrum, and those in pairs are more moderate than
those who are not paired. Communicating with groups that contain opposites is optimal
for the sender because only the presence of receivers with the opposite preference would
have a self-disciplining effect on the sender. While the above result also holds in the case
of single-minded Receivers and two states, the result is less trivial in this case because each
Receiver’s optimal action depends on the mean (as opposed to belief) because not all Bayes
plausible posterior distribution of means is attainable using some communication strategy
(Gentzkow and Kamenica, 2016).

Multiple partitions While I have focused on the case in which the Sender selects a single
partition of Receivers, it is also possible that the Sender selects multiple partitions of Re-
ceivers and a messaging strategy for each partition. Such a generalisation allows the Sender,
for example, to send both public and private messages to Receivers (Goltsman and Pavlov,
2011; Arieli and Babichenko, 2019; Mathevet, Perego and Taneva, 2020). Note that allow-
ing for multiple partitions allows one to use single-minded Receivers as building blocks for
“multi-minded” Receivers. For example, suppose that a Receiver takes action only if his
belief that the state is either θ ∈ Θ or θ ′ ∈ Θ\{θ} with sufficiently high probability. But
such a Receiver can be thought of as a group of two single-minded Receivers with opinions
θ and θ ′ if we allow additional communication to the pair after communicating with this
pair in concert with other receivers in a group. In Appendix A.3, I also provide an example
in which the ability for the Sender to adopt two nontrivial partitions can strictly benefit the
Sender.

Information Leaks Whether the Sender can adopt any semi-public communication—thus
her ability to benefit from designing her audience— depends on the extent to which the
Sender can control information leaks across groups. When leaks occur due to information
sharing between Receivers who belong to different groups, the Sender’s optimal commu-
nication can still be derived by adding a constraint requiring such Receivers to belong to the
same group. Observe that the extreme case in which information to any one group is known
to leak to all other groups is equivalent to the case in which the Sender is constrained to
adopting public communication.
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5 Conclusion

In this paper, I explore how a sender who lacks receivers’ trust can benefit from a mode
of communication that I call semi-public communication in which the sender partitions
the receivers into groups, and communicates publicly within each group but privately
across groups. The benefit of communicating in groups arises from the fact that cheap-
talk communication can be credible in front of an audience with diverse opinions because
the sender’s incentive to lie to some members of the audience can be offset by her incentive
to be truthful to the other members of the audience. Semi-public communication enables
the sender to communicate more effectively than private or public communication because
it allows the sender to tailor communication to differently diverse groups to maximise her
benefit from gaining credibility from the groups.

In a canonical game of persuasion with multiple receivers, I show that it is optimal for
the sender to separate her audience into two groups based on whether the sender needs to
persuade the receiver in the first place. The sender can further benefit by partitioning the
group consisting of those that need persuading and I provide various characterisations of
optimal partitions under different assumptions on the receivers’ preferences. A practical
implication of my results is that, while there is no need to ensure diversity of opinions in
political rallies that are held for the supporters, a politician can be more persuasive to swing
voters by campaigning across multiple events in which the audience consists of groups of
swing voters that care about different sets of issues.
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A Appendix

A.1 Omitted proofs

A.1.1 Proof of Lemma 1

Proof of Lemma 1. Toward proving the result, say that the Sender’s messaging strategy σ

is conditionally independent if there exists a collection if measurable maps (σG : Θ →
∆M)G∈P such that σ(m|·) = ∏G∈P σG(mG|·) for all m ∈ MP . Now fix a partition P ∈
Π(N) and a P-equilibrium (σ ,α,µ). I prove the result by showing that there exists a
P-equilibrium (σ̃ , α̃, µ̃) that yields the same payoff for the Sender but σ̃ is conditionally
independent. Given any group G ⊆ N, define vG : ×i∈GAi → R as vG(aG) := ∑i∈G vi(ai).
For each G ∈ P , define σ̃G : Θ → ∆M as

σ̃G (mG|·) := ∑
m−G∈M−G

σ ((mG;m−G) |·) .

The Sender’s payoff from P-equilibrium (σ ,α,µ) is given by

∫
Θ

∑
m∈MP

∑
a∈A

[
∑

G∈P

vG (aG)

][
∏

G∈P
∏
i∈G

αi (ai|mG)

]
︸ ︷︷ ︸

=α(a|m)

σ (m|θ)dµ0 (θ)

= ∑
θ∈Θ

∑
m∈MP

∑
G∈P

∑
aG∈AG

vG (aG) αG (aG|mG)︸ ︷︷ ︸
=:∏i∈G αi(ai|mG)

σ (m|θ)dµ0 (θ)

= ∑
θ∈Θ

∑
G∈P

∑
mG∈M

∑
aG∈AG

vG (aG)αG (aG|mG) ∑
m−G∈M−G

σ ((mG;m−G) |θ)︸ ︷︷ ︸
=σ̃G(mG|θ)

µ0 (θ)

= ∑
θ∈Θ

∑
m∈MP

∑
G∈P

[
∑

aG∈AG

vG (aG)αG (aG|mG) σ̃G (mG|θ)
]

µ0 (θ)

= ∑
θ∈Θ

∑
m∈MP

∑
a∈A

[
∑

G∈P

vG (aG)

]
∏

G∈P

([
∏
i∈G

αi (ai|mG)

]
σ̃G (mG|θ)

)
µ0 (θ)

= ∑
θ∈Θ

∑
m∈MP

∑
a∈A

[
∑

G∈P

vG (aG)

][
∏

G∈P
∏
i∈G

αi (ai|mG)

][
∏

G∈P

σ̃G (mG|θ)
]

µ0 (θ) .
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Thus, a payoff equivalent P-equilibrium (σ̃ ,α, µ̃) exists, where σ̃ is a conditionally inde-
pendent messaging strategy given by

σ̃ (m|·) := ∏
G∈P

σ̃G (mG|·) ∀m ∈ MP .

Observe that supp(σ̃) = supp(σ), and for each G ∈ P , for all mG ∈ M such that there
exists m−G ∈ M−G such that (mG;m−G) = supp(σ̃), we let

µ̃G (·|mG) :=
∑m−G∈M−G

σ̃ ((mG;m−G) |·)µ0 (·)
∑θ∈Θ ∑m−G∈M−G

σ̃ ((mG;m−G) |θ)µ0 (θ)
= µG (·|mG) ,

and for any other mG’s, µ̃G(·|mG) := µG(·|mG). Observe that σ and σ̃ induces the same
distribution of posterior beliefs for each group and thus α remains optimal for the receivers.

■

A.1.2 Proof of Lemma 2

Proof of Lemma 2. Parts (i) and (iii) were proved in the main body. I first prove part (v).
Fix a non-singleton group G ⊆ N1 and k ∈ {1 . . . , |G|−1} such that w(G) = |G|−k. Then,
by Lemma 3, there exist {µℓ}|Θ|

ℓ=1 ⊆ ∆Θ such that µℓ ∈
⋂

i∈Fℓ Bi and Fℓ ⊆ G with |Fℓ| =
|G|− k and µ0 is a convex combination {µℓ}|Θ|

ℓ=1. Now consider a grid in which columns
represent Receivers in G and the rows represent each elements of {F1, . . . ,F|Θ|}. If i ∈ Sℓ,
then the coordinate (Sℓ, i) is marked with  and if not #. Since |Fℓ| = |G|− k, each row
must have exactly k-many #’s—call this rule #1. Moreover, that G ⊆ N1 means that each
column must have at least one #—call this rule rule #2.36 Proving the result is equivalent
to showing whether it is possible to fill in a |Θ|-by-|G| grid while obeying rules #1 and #2.
For example, if |G| = 4 and w(G) = 3 (with |Θ| = 3 still), because each row must have
exactly #, there must be a column that does not have any #, violating rule #2 (see Figure
5).

36In Appendix (A.2), I explain how this formulation corresponds to a bipartite graph of Receivers with
particular properties.
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Figure 5: w(G) = 3 with |Θ|= 3 and |G|= 4.

Fℓ\i 1 2 3 4
F1 #    
F2  #   
F3   #  

More generally, there are k|Θ| many #’s that need to be placed on a |Θ|-by-|G| grid.
A way to proceed is to place one # diagonally from F1 to F|Θ| (as in the figure above)
and if there are #’s that are “left over”, then start filling in the remaining #’s diagonally
again from F1 to F|Θ|, and so on. Proceeding in this manner, one can always fill up to k|Θ|
columns. Hence, it must be that |G| ≤ k|Θ| (any other way to fill in |G|= k|Θ| columns can
also be rearranged by exchanging columns and/or rows such that # lies “on the diagon-
als”). It remains to argue that if |G|< k|Θ|, k|Θ|-many #’s can be placed in the grid while
satisfying rules #1 and #2. Placing # on the diagonals first ensures that each row has at
least one # so that rule #2 is not violated. Then, making sure each row has exactly k-many
# is possible since |G||Θ|− k|Θ|= (|G|− k)|Θ| ≥ 0.

(iv) I first argue that w(G) ≤ |G| − 1 for any G ⊆ N1. Fix some G ⊆ N1. Since the
Sender’s maximal payoff from each Receiver is 1, w(G) ≤ |G| and parts (i) and (iii) to-
gether implies w(G) ∈ {0,1, . . . , |G| − 1}. From part (v), if w(G) = |G| − k for some
k ∈ {1, . . . , |G|−1}, then

|G| ≤ k |Θ| ⇔ w(G)

|G| = 1− k
|G| ≤ 1− 1

|Θ| ⇒ w(G)≤ |G| |Θ|−1
|Θ| = |G|− |G|

|Θ| .

If |G| ≤ |Θ| ⇔ |G|
|Θ| ≤ 1, then the right-hand side would be greater than |G|− 1 and so the

bound is given by |G|−1. If |G|> |Θ| ⇔ |G|
|Θ| > 1, then the right-hand side is smaller than

|G|−1 so that |G| |Θ|−1
|Θ| is the lower upper bound. The result follows once we account for

the fact that |G| |Θ|−1
|Θ| may not be an integer while w(G) has to be an integer. ■

Remark 1. The upper bound from part (iv) of Lemma 4 is tight. That is, for any finite Θ

with |Θ| ≥ 2, there exit an interior µ0 ∈ ∆Θ and a finite set G of Receivers such that µ0 /∈ Bi

for all i ∈ G and that (5) holds with equality. Consider first the case in which |G| ≤ |Θ|.
Suppose |G|= |Θ| and that each Receiver in G prefers distinct states. Thus, we can identify
each Receiver i ∈ G by their opinion θi; i.e., G = Θ. For each θ ∈ Θ, let (γθ )θ∈Θ be such
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that γθ ∈ ( 1
|Θ| ,

1
|Θ|−1) for all θ ∈ Θ. Observe that

∑
θ̃∈Θ\{θ}

γ
θ̃
< ∑

θ̃∈Θ\{θ}

1
|Θ|−1

= 1

and that

∑
θ̃∈Θ

γ
θ̃
> ∑

θ̃∈Θ

1
|Θ| = 1.

The first implies inequality implies that BΘ\{θ} ̸= ∅ for all θ ∈ Θ because, in particular,
µ ∈ ∆Θ such that µ(θ̃) = γ

θ̃
for all θ̃ ∈ Θ\{θ} and µ(θ) = 1−∑θ̃∈Θ\{θ} γθ is contained in

BΘ\{θ}. The second inequality implies that ∆Θ\⋃i∈G Bi ̸=∅ because any µ ∈ ∆Θ such that
µ(θ̃)< γ

θ̃
for all θ̃ ∈Θ is contained in ∆Θ\⋃i∈G Bi. Thus, I can pick any µ0 ∈∆Θ\⋃i∈G Bi

as the prior belief and w(G) = |G|−1. Now fix any k ∈ {2,3, . . .} and let |G|= k|Θ| (which
exists by following the proof of part (v) of Lemma 4). Note that |G| > |Θ|. I will show
that there exists µ0 ∈ ∆Θ and {(θi,γi)}i∈G such that w(G) = |G| |Θ|−1

|Θ| = k(|Θ| − 1). Let
G1 be a set of |Θ| Receivers constructed as before such that w(G1) = |Θ| − 1. Let G

be the set of k|Θ| Receivers obtained by duplicating each Receiver in G1 k times. Then,
w(G) = k(|Θ|−1) as desired.

Remark 2. The construction in the proof of part (iv) of Lemma 4 when |G| > |Θ| means
that Receivers in a group G ⊆ N can be partitioned into smaller groups to attain the same
payoff collectively. However, this is not always possible as the following shows.

Claim 1. Suppose |Θ| ≥ 4 and let k ∈ {2,3, . . . ,⌊ (|Θ|−1)2+
√

(|Θ|−1)2+4
2 ⌋}. Then, there exists

µ0 ∈ ∆Θ and a set N1 of single-minded Receivers that require persuading such that |N1|=
k(|Θ|− k)+1, w(N1) = |N1|− k, and w(G) = 0 for all non-empty strict subset G of N1. In
particular, whenever |Θ| ≥ 6, there exists such a group with a maximum size greater than
|Θ|.

Proof. The proof is constructive. Fix |Θ| ≥ 4 and k ∈ {2,3, . . . ,⌊ (|Θ|−1)2+
√

(|Θ|−1)2+4
2 ⌋}. I

will construct a group of |N1|= k(|Θ|− k)+1-many single-minded Receivers that require
persuading with the desired properties. Note that the upper bound on k ensures that w(N1)≥
0 and also that |N1| ≥ 1. I need to show that there exist µ0 ∈ ∆Θ and ((θi,γi)) ∈ (Θ×
(0,1))|N1| such that w(N1) = |N1| − k, and w(G) = 0 for all non-empty strict subset G of
N1. Enumerate Receivers in N1 as N1 = {1, . . . , |N1|}. Suppose that Receivers 1 to |Θ| have
distinct opinions and that, for i ∈ {1, . . . ,k+ 1}, Receiver |Θ|+ i is identical to Receiver
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i− (⌊ i
(|Θ|−(k+1))⌋−1)(|Θ|− (k+1)). Thus, we only need to define γi for i ∈ {1, . . . , |Θ|}.

To that end,

� for each i∈{1, . . . , |Θ|−(k+1)}, let ∑ j∈{1,...|Θ|}\{i} γ j ≤ 1 so that
⋂

j∈{1,...,|Θ|}\{i}B j =

∅;

� for each i ∈ {|Θ|− k, . . . , |Θ|}, ∑ j∈{1,...,|Θ|−(k+1)} γ j + γi +∑ j∈{|Θ|+1,...,|N1|} γ j ≤ 1 so
that (

⋂
j∈{1,...,|Θ|−(k+1)}B j)∩Bi ∩ (

⋂
j∈{|Θ|+1,...,|N1|}B j) ̸=∅;

� ∑
|Θ|
i=1 γi > 1 so that ∆Θ\⋃|Θ|

i=1 Bi ̸=∅.

Above implies that there exists µ0 ∈ ∆Θ that is a convex combination of all elements of
{µi}|Θ|

i=1, where

µi ∈


⋂

j∈{1,...,|Θ|}\{i}B j if i ∈ {1, . . . , |Θ|− (k−1)}(⋂
j∈{1,...,|Θ|−(k+1)}B j

)
∩Bi ∩

(⋂
j∈Θ|+1,...,|N1|B j

)
if i ∈ {|Θ|− k, . . . , |Θ|}

.

The figure below shows what the above construction implies graphically when |Θ|= 7 and
k = 3 (and so |Θ|− (k+1) = 3).

Figure 6: Construction when |Θ|= 7, k = 3.

Fℓ\i 1 2 4 3 5 6 7 | 8 9 10 11 12 13
F1 #       | #   #   
F2  #      |  #   #  
F3   #     |   #   #
F4     # # # |       
F5    #  # # |       
F6    # #  # |       
F7    # # #  |       

By construction, w({1, . . . , |Θ|}) = 0 because for any µi for i ∈ {1, . . . , |Θ|− (k+ 1)}
belongs in |Θ|−1 many B j’s while µi for i ∈ {|Θ|−k, . . . , |Θ|} belongs in |Θ|−k < |Θ|−1
many B j’s. By part (ii) of Lemma 2, it follows that no subset of {1, . . . , |Θ|} can secure a
strictly positive payoff. Moreover, adding any strict subsets of Receivers {|Θ|+1, . . . , |G|}
to {1, . . . , |Θ|} does not allow the Sender to secure a strictly positive payoff either as there
is at least µi for some i ∈ {1, . . . , |Θ|− (k+ 1)} that belongs in stricter greater number of
B j’s than others. Thus, by Lemma part (iv) of Lemma 4, no (strict) partition of N1 can lead
to a strictly positive payoff for the Sender.
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Finally, observe that |N1| is maximised at k∗ = |Θ|−1
2 which implies group size of

(|Θ|−1)2

4 . Since |Θ| ≥ 3, we must have

(|Θ|−1)2

4
≥ |Θ| ⇔ |Θ| ≥ 3+2

√
2 ≈ 5.8.

Note that (|Θ|−1)2

4 ≥ 1 if |Θ| ≥ 4. ■

A.1.3 Proof of Proposition 4

Let us first consider the case with homogenous Receivers.

Lemma 6. Suppose Receivers are single-minded and homogenous, and Θ = {θ1,θ2,θ3}.

For any G ⊆ N1, there exists a partition PG ∈ Π(G), such that |F | ≤ 3 for all F ∈ PG,

∑F∈PG
w(F)≥ w(F), and PG can be obtained by a greedy algorithm.

Proof. Suppose Receivers are single-minded and |Θ|= 3 and fix G⊆N1 with wG ≡w(G)>

0. By Lemma 1, µ0 is a convex combination of beliefs in {BF}F∈F associated with exactly
(i) two or (ii) three elements from F := {F ⊆ G : |S|= wG}.

Case (i): µ0 = αµF1 +(1−α)µF2 for some α ∈ (0,1) and µFr ∈ BFr with |Fr|= wG and
Fr ⊆ G for each r ∈ {1,2}. By convexity of each Bi, BFr is also convex and so F1 ∩F2 =

∅ because G ⊆ N1). It follows that |G| ≥ 2wG. Take any pair { f1, f2} where for each
r ∈ {1,2}, fr ∈ Fr and observe that µFr ∈ Br . By Lemma 1, a payoff of one is { f1, f2}-
securable. Since wG-many such pairs can be created, partitioning of G into such pairs
together yields a payoff of at least wG to the Sender.

Case (ii): µ0 = α1µF1 +α2µF2 +(1−α1 −α2)µF3 for some α1,α2 > 0, α1 +α2 < 1
and µFr ∈ BFr with |Fr| = wG and Fr ⊆ G for each r ∈ {1,2,3}. Convexity of Bi and the
fact that G ⊆ N1 means F1 ∩F2 ∩F3 = ∅, which, in turn, means that no Fr can contain
all types of Receiver; i.e., Fr contains only one type of Receiver (if γθ + γθ ′ > 1 for all
distinct θ ,θ ′ ∈ Θ) or contains at most two distinct types of Receivers, say θ ,θ ′ ∈ Θ (if
γθ + γθ ′ ≤ 1).

Consider the following figure, where columns represent Receivers in G and the rows
represent each Fr. If i ∈ Fr, then the coordinate is marked with  and if not #. Without
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loss of generality, assume that Receivers {1, . . . ,wG} belong in F1 (note |G|> wG).

1 2 · · · wG wG +1 · · · |G|
F1   · · ·  # · · · #

F2

F3

For each i ∈ F1, the possibilities are: i belongs in just F1 or i belongs in either F1 ∩F2 or
F1 ∩F3. Reorder i’s such that

{i}n1
i=1 {i}n1+n12

i=n1+1 {i}n1+n12+n13=wG
i=n1+n12+1 wG +1 · · · |G|

F1    # · · · #

F2 #  #

F3 # #  

where nr denotes the number of Receivers in Fr that belongs only in Fr and nrt denote the
number of Receivers in Fr that belongs in both Fr and Ft . Given this notation, there must
be wG −n12 many Receivers in {wG +1, . . . , |G|}. Such Receivers can either belong in just
F2 (n2 many of them) or in F23 (n23 many of them). Reorder {wG +1, . . . |G|} so that

{i}n1
i=1 {i}n1+n12

i=n1+1 {i}n1+n12+n13=wG
i=n1+n12+1 {i}wG+n2

i=wG+1 {i}wG+n2+n23
i=wG+n2+1 · · · |G|

F1    # # · · · #

F2 #  #   

F3 # #  #  

Then, i ∈ {wG +n2 +n23 +1, . . . |G|}, can belong in just F3; i.e.,

{i}n1
i=1 {i}n1+n12

i=n1+1 {i}n1+n12+n13=wG
i=n1+n12+1 {i}wG+n2

i=wG+1 {i}wG+n2+n23
i=wG+n2+1 {i}|G|

i=wG+n2+n23+1

F1    # # #

F2 #  #   #

F3 # #  #   
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Since wG is G-securable, we must have

|F1|= n1 +n12 +n13 = wG, (8)

|F2|= n2 +n12 +n23 = wG, (9)

|F3|= n3 +n13 +n23 = wG. (10)

Define Frt := Fr ∩Ft (and so nrt = |Frt |). Consider first a trio consisting of one Receiver
each from a ∈ F12, b ∈ F13 and c ∈ F23. The trio {a,b,c} secures a payoff of two since

µ0 = αµ1 +β µ2 +(1−α −β )µ3

for some µ1 ∈Ba∩Bb, µ2 ∈Ba∩Bc and µ3 ∈Bb∩Bc. There can be at most min{n12,n13,n23}
many such trios. Without loss of generality, suppose that min{n12,n13,n23} = n12 (i.e.,
n13,n23 ≥ n12) and so there are n13 −n12 and n23 −n12 many Receivers left in F13 and F23,
respectively. Observe that i ∈ F13 can be paired with j ∈ F2 ∪F23 to secure a payoff of one
since µ1,µ3 ∈ Bi and µ2 ∈ B j. Similarly, i ∈ F23 can be paired with j ∈ F1 ∪F13 to secure a
payoff of one. The number of pairs that can be formed are as follows.

� F13 ×F2: min{n13 −n12,n2}.

� F23 ×F1: min{n23 −n12,n1}.

� F13 ×F23: min{n13 −n12,n23 −n12}.

Suppose that the Sender creates min{n13−n12,n2} pairs of F13×F2 first, followed by pairs
of F23 ×F1.

� If min{n13−n12,n2}= n13−n12, then there may be Receivers left over in F2’s but no
more j ∈ F13 to pair them with. However, there are still n23−n12 many Receivers left
in F23 who can be paired with j ∈ F1 to secure a payoff of one; min{n23 − n12,n1}
many such pairs can be formed. Consider now the Sender’s ability to produce other
pairs of F23 ×F1 that secure a payoff of one.

▷ If min{n23 −n12,n1}= n1, then Sender can secure a total payoff of

w(PG) =2n12 +(n13 −n12)+n1 = wG,

where the last equality follows from (8).
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▷ If min{n23 − n12,n1} = n23 − n12, then there may be Receivers in F1, F2 and
F3—a trio consisting of each such Receiver can secure a payoff of one. Hence,
by (8)–(10),

w(PG) = 2n12 +(n13 −n12)+(n23 −n12)+min{n1,n2,n3}

=



n12 +n13 +n1︸ ︷︷ ︸
=wG

+n23 −n12︸ ︷︷ ︸
≥0

if min{n1,n2,n3}= n1

n12 +n23 +n2︸ ︷︷ ︸
=wG

+n13 −n12︸ ︷︷ ︸
≥0

if min{n1,n2,n3}= n2

n13 +n23 +n3︸ ︷︷ ︸
=wG

+n12 −n12︸ ︷︷ ︸
=0

if min{n1,n2,n3}= n3

≥ wG.

� If min{n13 −n12,n2}= n2, then there may be Receivers left over in F13 but no more
Receivers in F2 to pair them with. However, they can be paired with Receivers left in
F23 to secure a payoff of one; min{n13 −n12 −n2,n23 −n12} many such pairs can be
formed.

▷ If min{n13 − n12 − n2,n23 − n12} = n23 − n12, then there are no Receivers that
can be paired with Receivers left over in F13 to secure a payoff of one. Hence,
by (10),

w(PG) = 2n12 +n2 +n23 −n12 = n12 +n2 +n23 = wG.

▷ If min{n13−n12−n2,n23−n12}= n13−n12−n2, then there may be Receivers
left over in F23 who can be paired with Receivers in F1 to secure a payoff of
one; min{n23 −n12 − (n13 −n12 −n2),n1} many such pairs can be formed.

• If min{n23 −n12 − (n13 −n12 −n2),n1}= n1, then, by (8),

w(PG)≥ 2n12 +n2 +(n13 −n12 −n2)+n1 = n12 +n13 +n1 = wG.

• If min{n23−n12−(n13−n12−n2),n1}= n23−n12−(n13−n12−n2), then,
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by (9),

w(PG)≥ 2n12 +n2 +(n13 −n12 −n2)+n23 −n12 − (n13 −n12 −n2)

= n12 +n23 +n2 = wG.

Hence, we can construct a partition of G in which each group consists of no more than
three Receivers that together can secure at least wG.

Finally, observe that in both cases (i) and (ii), the partition of G can be attained via the
greedy algorithm. ■

Proof of Proposition 4. First, Lemma 6 proves the result for the case in which Receivers
are homogenous and |Θ| = 3. If Receivers are instead contentious (but |Θ| = 3), then
observe that a trio can no longer secure a payoff of two (recall Proposition 5). Thus, the
same proof as in Lemma 6 implies that the Sender should simply maximise the number of
pairs that can secure a payoff of one. Finally, suppose |Θ| = 2. Once again, only a pair
can secure a payoff of two and the same argument as in the proof of Lemma 6 implies the
greedy algorithm yields an optimal partition. ■

A.1.4 Proof of Proposition 7

The set of posterior beliefs under which Receiver i with spatial preferences takes action is
given by

Bi :=
{

µ ∈ ∆Θ : (−1)θi
(
γi −Eµ [θ ]

)
≥ 0
}
.

Under this definition of Bi, the condition (4) for G-securability remains the same and The-
orem (2) continues to hold so that one may focus attention on how the Sender should group
Receivers that require persuading (i.e., N1). Let F̃i : Θ ⇒ R denote the Sender’s value
correspondence in terms of posterior means given by

F̃i (E) :=


{1} if |θi − γi|> |θi −E|
[0,1] if |θi − γi|= |θi −E|
{0} if |θi − γi|< |θi −E|

.

The following lemma gives a characterisation of G-securability when Receivers have spa-
tial preferences.
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Lemma 7. When Receivers have spatial preferences, for any G ⊆ N1, a payoff s ∈ R is

G-securable if and only if there exists a cutoff k ∈ [0,1] such that

s ∈
[
∑
i∈G

F̃i
(
Eµ0 [θ |θ ≥ k]

)]⋂[
∑
i∈G

F̃i
(
Eµ0 [θ |θ ≤ k]

)]
. (11)

Proof. Given that G ⊆ N1, max F̃i is quasiconvex. The result is then immediate from Claim
5 in Lipnowski and Ravid (2020). ■

In words, it suffices for the the Sender tells a group of Receivers with spatial prefer-
ences whether θ is above or below some cutoff k ∈ [0,1]. Thus, the benefit of semi-public
communication is that it allows the Sender to adopt different cutoffs for each group. The
following lemma is the key to proving Proposition 7.

Lemma 8. Suppose Receivers have spatial preferences. If a pair of Receivers secures a

payoff of one, then the Sender can secure a payoff of one from a pair consisting of less

extreme Receivers.

Proof. For i0, i1 ∈ N1 such that w({i0, i1}) = 1 and that i0 (resp. i1)’s opinion is 0 (resp. 1).
By Lemma 7, there exists a cutoff k∈Θ such that γi0 ≥Eµ0[θ |θ ≤ k] and γi1 ≤Eµ0[θ |θ ≥ k].
Let i′0, i

′
1 ∈ N1 be less extreme than i0 and i1 respectively. Then, the same k satisfies (11) so

that by Lemma 7, w({i′0, i
′
1}) = 0. ■

Proof of Proposition 7. The proof proceeds by showing that any optimal partition can be
further partitioned to satisfy condition (i). I then show that condition (iii) can be satisfied
among Receivers who are paired using Lemma 8. The same lemma then can then be used
to show any unpaired Receivers who are less extreme than some paired Receivers can be
exchanged to satisfy (ii).

Fix an optimal partition P∗ ∈ Π(N1) with W (P∗) =W ∗. I first construct a partition of
N1 from P∗ that consists of pairs and singleton Receivers. I will then show that Receivers
in pairs can be exchanged to ensure negative assortativity. To that end, for each group
G ∈ P∗ such that |G|> 2, there exists a cutoff kG ∈ Θ that satisfies (11) with wG = w(G).
For each z ∈ {0,1}, let Gz ⊆ G be the Receivers of opinion z that take action a = 1under
the cutoff kG (note|Gz|= w(G)). Since a payoff of one is securable with any pair (i0, i1) ∈
G0 ×G1 with the same cutoff, G0 ∪G1 can be decomposed into pairs that each secure
a payoff of one that altogether secure a payoff of w(G). Let PG denote the partition
of G consisting of unions of such pairs of Receivers with singleton sets of Receivers in
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G\{G0 ∪G1}. Then, P :=
⋃

G∈P∗ PG is a partition of N consisting of pairs of Receivers
that each secure a payoff of one and singleton sets of Receivers such that W (P) =W ∗.

Let {(i10, i11),(i20, i21), . . . ,(iW
∗

0 , iW
∗

1 } denote the pairs in P such that i j
0 is more extreme

than i j+1
0 for each z ∈ {0,1} and each j ∈ {1, . . . ,W ∗− 1}. Suppose that i10 (i.e., the most

extreme Receiver with opinion 0 among those paired) is not paired with the most moderate
Receiver with opinion 1 among those paired (if not, then repeat the process for i20); i.e.,
there exists j ∈ {2, . . . ,W ∗} such that i j

1 is strictly more moderate that i11. Let i j′
1 be the least

moderate among all such j’s. By Lemma 8, i j′
1 and i11 can be exchange without affecting

Sender’s payoff. Now repeat the process for i20, and so on. The process clearly terminates.
Let S̃ denote the set of pairs after this process terminates and observe that the pairs satisfy
property (iii) among all Receivers who are paired in S̃.

Now suppose there exists an unpaired Receiver with opinion z ∈ {0,1}, say iz, who is
more moderate than some Receiver with opinion z who is paired. By Lemma 8, such a
Receiver can be exchanged with the most extreme Receiver with opinion z who is paired
and is also more moderate than Receiver iz without affecting Sender’s payoff. Repeat this
process until there are no such iz’s. Then, all the unpaired Receivers are more moderate
than paired Receivers (with the same opinion). ■

A.2 Interpreting G-securability as a graph

Given a set N = {1, . . . ,n} of Receivers, k ∈ {1, . . . , |N|} and w ∈ {1,2, . . .n}, let F (w)

denote the collection of distinct subsets of N of cardinality w with no common element;
i.e.,

F (w) :=
{

G ∈
⋃

{F ⊆ N : |F |= w} :
⋂

{G ∈ G }=∅
}
.

Given G⊆N1, as mentioned above in the proof of Lemma 4, a payoff w∈Z+ is G-securable
if there exists a collection of posterior beliefs {µ} ⊆ ∆Θ such that µ ∈ ⋂i∈Fµ

Bi for some
Fµ ∈ F (w), and

⋂
µ Fµ =∅.

As an example, consider the case in which a payoff of 3 is G-securable with G =

{1,2,3,4,5} because there exits {µa,µb,µc} such that

µa ∈ B1 ∩B2 ∩B5,

µb ∈ B1 ∩B3 ∩B4,

µc ∈ B2 ∩B3 ∩B4 ∩B5.
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Using the notation developed in the proof of Lemma 4, the situation above can be expressed
as below.

Figure 7: w(G) = 3 with |G|= 5.

Fℓ\i 1 2 3 4 5
F1   # #  
F2  #   #
F3 #     

.

Observe that the figure above can also be expressed as a bipartite graph. To that end,
recall that an (undirected) graph is a pair (V,E), where V is the set of vertices and E

is the set of edges that connects two vertices such that a vertex i ∈ V is connected to a
vertex j ∈ V if and only if (i, j) ∈ E and ( j, i) ∈ E. A bipartite graph with parts {G,F},
denoted (G,F,E), is a graph (V,E) such that: (i) {G,F} forms a partition of V ; and (ii)
E ⊆ (G×F)∪ (F ×G). Then, a payoff w ∈ Z+ is G-securable if and only if there exists
a bipartite graph (G,F := {1, . . . , |Θ|},E) such that: (i) each vertex in G has at most k−1
edges i.e.,

|{ j ∈ F : (i, j) ∈ E}| ≤ k−1 ∀i ∈ G;

and (ii) each vertex in F has at least w edges, i.e.,

|{i ∈ N : (i, j) ∈ E}| ≥ w ∀ j ∈ F.

Thus, the example above can be described with the following bipartite graph.

Figure 8: Bipartite graph: w(G) = 3 with |G|= 5.

1 2 3 4 5

F2F1 F3

Whether a payoff of G can be further split without affecting payoffs depends on whether
there exist subgraphs that together can secure a payoff of three. In this example, we can
create two bipartite subgraphs by partitioning G as {{1,2,3},{4,5}}. Observe from the
figure below that the subgraph consisting of {1,2,3} secures a payoff of two (count the
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minimum number of edges from vertices in {Sr}) and the subgraph consisting of {4,5}
secures a payoff of one; i.e., together the two graphs secure a payoff of three.

Figure 9: 3 is securable with {{a,b,c},{d,e}}.

1 2 3

F2F1 F3

4 5

F2F1 F3

As noted previously, not all groups can be split without leading to lower overall payoffs.

A.3 Examples

A.3.1 Maximum group size

The example below shows that when |Θ| = 4 and Receivers are not contentious, the max-
imum size of groups need not be less than or equal to |Θ| and groups might contain more
than one Receiver of the same type.

Example 4. Suppose Θ = {θ1,θ2,θ3,θ4}, N = N1 = {1,2,3,4,5} with

t1 = t5 = θ1, t2 = θ2, t3 = θ3, t4 = θ4,

γθ1 =
3
4
, γθ2 = γθ3 = γθ4 =

1
4
,

and µ0 = (1+ε

2 , 1−ε

6 , 1−ε

6 , 1−ε

6 ) for some ε > 0 small. Then, µ0(θ) ≤ γθ for all θ ∈ Θ.
Moreover, given

µ1 =

(
1
4
,
1
4
,
1
4
,
1
4

)
∈ B2 ∩B3 ∩B4, µ3 =

(
3
4
,0,

1
4
,0
)
∈ B1 ∩B3 ∩B5,

µ2 =

(
3
4
,
1
4
,0,0

)
∈ B1 ∩B2 ∩B5, µ4 =

(
3
4
,0,0,

1
4

)
∈ B1 ∩B4 ∩B5,

µ0 can be expressed as

µ0 =
3−2(1+ ε)

2
µ1 +

1+2ε

6
µ2 +

1+2ε

6
µ3 +

1+2ε

6
µ4.

Therefore, by Lemma 3, w(N1) = 3. However, no (nontrivial) partition of N1 can guarantee
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a payoff of 3 for the Sender. Since a partition of N1 can secure 3 if and only if (i) a
group consisting of four Receivers secures a payoff of three or (ii) a group consisting of
three Receivers, say P1 ⊆ N1, secures a payoff of two, and another group consisting of two
Receivers, say P2 = N1\P1, secures a payoff of one.

Figure 10: Maximum size of groups need not be less than |Θ| when |Θ|= 4.

( 3
4 , 1

4 , 0, 0)

( 3
4 , 0, 1

4 , 0)

( 3
4 , 0, 0, 1

4 )

( 3
4 , 1

4 , 0, 0)
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4 , 0, 0, 1
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( 3
4 , 1

4 , 0, 0)
( 3
4 , 0, 1

4 , 0)

( 3
4 , 0, 0, 1

4 )

B4

B1 = B5

B2

B3

✓2

✓3

✓4

✓1

✓2

✓3

✓4

✓1

✓2

✓3

✓4

✓1

✓2

✓3

✓4

✓1

✓2

✓3

✓4

✓1

µ0 µ0
µ0

µ0µ0

(i) Note that B2 ∩B3 ∩B4, B1 ∩B2 ∩B5 = µ2, B1 ∩B3 ∩B5 = µ3, B1 ∩B4 ∩B5 = µ4 are
the only (set of) beliefs in which three Receivers would take action a = 1. Removing
Receiver 1 or 5 from N would leave only B2 ∩B3 ∩B4 so that, given µ0 /∈ Bi for
all i ∈ N, the remainder of Receivers cannot secure a payoff of one for the Sender.
Consider removing Receiver 4 (the argument is symmetric for Receivers 2 and 3),
which leaves B1 ∩B2 ∩B5 = µ2 and B1 ∩B3 ∩B5 = µ3. However, for any α ∈ [0,1],

αµ2 +(1−α)µ3 =

(
3
4
,
α

4
,
1−α

4
,0
)

so that µ0 /∈ co({µ2,µ3}). Hence, by Lemma 3, {1,2,3,5} cannot secure a payoff of
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three. It follows that the group of four Receivers cannot secure a payoff of three for
the Sender.

(ii) Since P ⊆ N1, P2 ̸= {1,5}. Consider two cases: (a) P2 consists of type-θ1 Receiver
and a type-θ2 Receiver (symmetric argument for θ3 and θ4) or (b) P2 consists of
type-θ2 and type-θ3 Receivers (symmetric argument in the case P2 consists of types
{θ2,θ4} or {θ3,θ4}).

(a) In the first case, P1 = {1,3,4} and P2 = {2,5}. The set of beliefs under which
two Receivers in P1 take action a = 1 are: B3 ∩B4, B1 ∩B3 = µ3 and B1 ∩B4 =

µ4. Suppose there exists µ34 ∈ B3 ∩B4 such that

µ0 (θ1) = (1−α −β )µ34 (θ1)+αµ3 (θ1)+β µ4 (θ1)

= (1−α −β )µ34 (θ1)+
3
4
(α +β ) ,

µ0 (θ2) = (1−α −β )µ34 (θ2)+αµ3 (θ2)+β µ4 (θ2)

= (1−α −β )µ34 (θ2) . (12)

Adding the two together gives

µ0 (θ1)+µ0 (θ2) =
3
4
(α +β )+(1−α −β )(µ34 (θ1)+µ34 (θ2)) .

Since µ34 ∈ B3 ∩B4, µ34(θ1)+µ34(θ2)≤ 1− γθ3 − γθ4 =
1
2 so that

µ0 (θ1)+µ0 (θ2)≤
3
4
(α +β )+

1
2
(1−α −β ) =

1
2
+

1
4
(α +β ) .

Using (12) and the fact that µ34(θ2)≤ µ34(θ1)+µ34(θ2)≤ 1
2 gives

α +β = 1− µ0 (θ2)

µ34 (θ2)
≤ 1−2µ0 (θ2)

α +β = 1− µ0 (θ2)

µ34 (θ2)
∈ [µ0 (θ2) ,1−2µ0 (θ2)]
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so that

µ0 (θ1)+µ0 (θ2)≤
1
2
+

1
4
(1−2µ0 (θ2)) =

3
4
− 1

2
µ0 (θ2)

⇔ µ0 (θ1)≤
3
4
− 3

2
µ0 (θ2) .

Substituting the values for µ0(θ1) and µ0(θ2) gives

1+ ε

2
≤ 3

4
− 3

2

(
1− ε

6

)
=

1
4
(2+ ε)⇔ ε ≤ 0,

which contradicts the assumption that ε > 0. Hence, 2 is not P1-securable.

(b) In the second case, P1 = {1,4,5}. However, since B1 = B5, that P ⊆ N1 implies
that w(P1) = 1. Hence, 2 is not P1-securable.

□

A.3.2 Failures of the greedy algorithm

The next example shows that the greedy algorithm fails to attain an optimal communication
when Receivers are not contentious even when |Θ|= 3.

Example 5. Suppose Θ = {θ 1,θ 2,θ 3} and that N = {1,2,3,4,5,6}. Receivers are all
single-minded and their preferences are:

((θi,γi))
6
i=1 =

((
θ

1,
2
5

)
,

(
θ

2,
2
5

)
,

(
θ

1,
2
5

)
,

(
θ

2,
3
4

)
,

(
θ

1,
3
4

)
,

(
θ

1,
3
4

))
.

Assume that µ0 = (1
3 ,

1
3 ,

1
3) and observe that µ0 /∈ Bi for all i ∈ N.
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Figure 11: Example 5.

w({1, 2, 3}) = 2

w({1, 4}) = 1 w({2, 5}) = 1 w({3, 6}) = 1
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B2 B3
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µ0 µ0

µ0 µ0 µ0

✓1

✓2 ✓3

✓1

✓2 ✓3

✓1

✓2 ✓3

✓1

✓2 ✓3

✓1

✓2 ✓3

As Figure11 above shows, observe that

w({1,2,3}) = 2,

w({1,4}) = w({2,5}) = w{3,6}= 1.

Crucially, because w({4,5,6}) = 0, by Lemma 2 (ii), no partition of {4,5,6} can secure a
positive payoff. Therefore, the Sender’s payoff is strictly greater under {{1,4},{2,5},{3,6}}
than any partition that contains {1,2,3}. In particular, the example demonstrates that, while
it is optimal to group {1,2,3} whenever the set of Receivers is given by {1,2,3}∪Ñ, where
Ñ ⊂ {4,5,6}, when the set of Receiver is in fact N, then it is no longer optimal to group
{1,2,3}. □

The next example shows that the greedy algorithm fails to attain an optimal communic-
ation when Receivers are contentious and homogenous but |Θ|= 4.

Example 6. Suppose Θ = {θ 1,θ 2,θ 3,θ 4}, N = {1,2,3,4,5,6} and

(ti)
|N|
i=1 =

((
θ

1,
2
3

)
,

(
θ

2,
2
3

)
,

(
θ

3,
2
3

)
,

(
θ

4,
2
3

)
,

(
θ

3,
2
3

)
,

(
θ

4,
2
3

))
.
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Let µ0 = (1
3 ,

1
3 ,

1
6 ,

1
6). Since for any distinct i, j,k ∈ {1,2,3,4},

co
(
Bi ∪B j

)
=

{
µ ∈ ∆Θ : µ (θi)+µ

(
θ j
)
≥ 2

3

}
,

co
(
Bi ∪B j ∪Bk

)
=

{
µ ∈ ∆Θ : µ (θi)+µ

(
θ j
)
+µ (θk)≥

2
3

}
,

it follows that

µ0 ∈ co(B1 ∪B2) , co(B1 ∪B3 ∪B4) , co(B2 ∪B3 ∪B4)

µ0 /∈ co(B3 ∪B4) , co(B1 ∪B3) , co(B1 ∪B4) , co(B2 ∪B3) , co(B2 ∪B4) .

Since {1,2} is the only pair of Receivers that can secure a payoff of one, the greedy al-
gorithm would yield a partition that contains {1,2}. Moreover, because co(B3 ∪B4 ∪B5 ∪
B6) = co(B3∪B4), it follows that w({3,4,5,6}) = 0, which, in turn, means that any subset
of {3,4,5,6} cannot secure a strictly positive payoff. Together, these imply that the greedy
algorithm would a payoff of one to the Sender. However, the Sender can strictly do better
by instead partitioning the Receivers as {{1,3,4},{2,5,6}} because this partition yields a
payoff of two for the Sender. □

A.3.3 Multiple partitions

The following example demonstrates that the ability to adopt communication strategies
over multiple partitions can strictly benefit the Sender by allowing her to guarantee that
two Receivers take action a = 1 when a single partition could only guarantee one Receiver
to take action a = 1.

Example 7. Suppose N = {1,2,3}, Θ = {θ 1,θ 2,θ 3}, µ0 = (1
5 ,

3
5 ,

3
5), ti = θi for each i ∈

{1,2,3}, and γθ 1 = 2
5 , γθ 2 = 13

20 , and γθ 3 = 1
4 . Since γθ 1 + γθ 2 > 1, w(N)≤ 1. However, we

will show that if the Sender can partition the Receivers in multiple ways, she can guarantee
a payoff of two. Specifically, suppose P1 = {{1,2},{3}} and P2 = {{1},{2,3}} and let
m1 ∈ {ℓ1,r1} be the message that the Sender sends to the group {1,2} under P1 and m2 ∈
{ℓ2,r2} be the message that the Sender sends to group {2,3} under P3. Thus, Receiver 1
observes message m1, Receiver 3 observes message m2, and Receiver 2 observes message
(m1,m2). Let π : Θ → ∆({ℓ1,r1}×{ℓ2,r2}) be as shown in the table below.
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Table 1: Example: Messaging strategy over multiple partition.

π (m1,m2|θ) θ 1 θ 2 θ 3

(ℓ1, ℓ2) 0 0 0
(ℓ1,r2) 0 3

5
4
5

(r1, ℓ2) 0 2
5 0

(r1,r2) 1 0 1
5

The posterior beliefs for Receiver 1 who observes m1 ∈ {ℓ1,r1} are

0 = µ
(
θ

1|ℓ1
)
=

π
(
ℓ1,r2|θ 1)

∑θ̃∈Θ
π
(
ℓ1,r2|θ̃

)
< γθ 1 =

2
5

≤ π
(
r1, ℓ2|θ 1)+π

(
r1,r2|θ 1)

∑θ̃∈Θ
π
(
r1, ℓ2|θ̃

)
+π

(
r1,r2|θ̃

) = µ
(
θ

1|r1
)
=

5
12

so that Receiver 1 takes action a = 1 if and only if m1 = r1. The posterior beliefs for
Receiver 3 who observes m2 ∈ {ℓ2,r2} are:

0 = µ
(
θ

3|ℓ2
)
=

π
(
r1, ℓ2|θ 3)

∑θ̃∈Θ
π
(
r1, ℓ2|θ̃

)
< γθ 3 =

1
4

≤ π
(
ℓ1,r2|θ 3)+π

(
r1,r2|θ 3)

∑θ̃∈Θ
π
(
ℓ1,r2|θ̃

)
+π

(
r1,r2|θ̃

) = µ
(
θ

3|r2
)
=

5
19

so that Receiver 3 takes action a = 1 if and only if m2 = r2. Posterior beliefs for Receiver
2 who observes (m1,m2) ∈ {ℓ1,r1}×{ℓ2,r2} are

0 = µ
(
θ

2|r1,r2
)
=

π
(
r1,r2|θ 2)

∑θ̃∈Θ
π
(
r1,r2|θ̃

)
< γθ 2 =

13
20

< µ
(
θ

2|ℓ1,r2
)
=

π
(
ℓ1,r2|θ 2)

∑θ̃∈Θ
π
(
ℓ1,r2|θ̃

) = 9
13

< µ
(
θ

2|r1, ℓ2
)
=

π
(
r1, ℓ2|θ 2)

∑θ̃∈Θ
π
(
r1, ℓ2|θ̃

) = 1
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so that Receiver 2 takes action a= 1 if and only if (m1,m2)∈ {(r1, ℓ2),{ℓ1,r2}}. Therefore,

� if (m1,m2) = (ℓ1,r2), Receivers 2 and 3 take action a = 1 ;

� if (m1,m2) = (ℓ1,r2), Receivers 1 and 2 take action a = 1;

� if (m1,m2) = (r1,r2), Receivers 1 and 3 take action a = 1.

Hence, the Sender has no incentive to deviate from π and she can guarantee a payoff of two
from the group of two.

Figure 12: Example: Sender strictly benefits from multiple partitions.

µ(·|r1, r2)
B1

B2 B3

✓1

✓2 ✓3

µ0

µ(·|r1)

µ(·|r2)

µ(·|`2) = µ(·|r1, `2)

µ(·|r1, r2)

µ(·|`1, r2)µ(·|`1)
=

=

□
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